Answer:
246 ft is the maximum height
Step-by-step explanation:
The height h given above is a quadratic function. The graph of h as a function of time t gives a parabolic shape and the maximum height h occur at the vertex of the parabola. For a quadratic function of the form h = a t² + bt + c, the vertex is located at t = - b / 2a. Hence for h given above the vertex in the question s(t) = 124 + 64t − 16t², is at t
t = -64/2(-16) = 64/32 = 2 seconds
Thus, 2 seconds after the object was thrown, it reaches its highest point (maximum value of h) which is given by
h = -16(2)² + 64 (2) + 124 = 246eet
-2 and 5 (just put in a graphing calculator and find the zeros)
perimeter =QR+RS+ST+TU+UQ =26.1
RQ = 5.39
RS = 4.47
ST = 3.61
TU = 4.12
UQ = 8.54
Part A:
The average rate of change refers to a function's slope. Thus, we are going to need to use the slope formula, which is:

and
are points on the function
You can see that we are given the x-values for our interval, but we are not given the y-values, which means that we will need to find them ourselves. Remember that the y-values of functions refers to the outputs of the function, so to find the y-values simply use your given x-value in the function and observe the result:




Now, let's find the slopes for each of the sections of the function:
<u>Section A</u>

<u>Section B</u>

Part B:
In this case, we can find how many times greater the rate of change in Section B is by dividing the slopes together.

It is 25 times greater. This is because
is an exponential growth function, which grows faster and faster as the x-values get higher and higher. This is unlike a linear function which grows or declines at a constant rate.