Answer:
The polar coordinate is ![(\sqrt{2},315^\circ)](https://tex.z-dn.net/?f=%28%5Csqrt%7B2%7D%2C315%5E%5Ccirc%29)
B is correct
Step-by-step explanation:
Given:
Rectangular coordinates: (1,-1)
We need to change into polar coordinate.
Cartesian to polar change rule:
![(x,y)\rightarrow (r,\theta)](https://tex.z-dn.net/?f=%28x%2Cy%29%5Crightarrow%20%28r%2C%5Ctheta%29)
![x=r\cos\theta](https://tex.z-dn.net/?f=x%3Dr%5Ccos%5Ctheta)
![y=r\sin\theta](https://tex.z-dn.net/?f=y%3Dr%5Csin%5Ctheta)
![\text{Where, }r=\sqrt{x^2+y^2}\text{ and }\theta=\tan^{-1}\dfrac{y}{x}](https://tex.z-dn.net/?f=%5Ctext%7BWhere%2C%20%7Dr%3D%5Csqrt%7Bx%5E2%2By%5E2%7D%5Ctext%7B%20and%20%7D%5Ctheta%3D%5Ctan%5E%7B-1%7D%5Cdfrac%7By%7D%7Bx%7D)
![=r=\sqrt{1+1}=\sqrt{2}](https://tex.z-dn.net/?f=%3Dr%3D%5Csqrt%7B1%2B1%7D%3D%5Csqrt%7B2%7D)
![\sqrt{2}\cos\theta=1](https://tex.z-dn.net/?f=%5Csqrt%7B2%7D%5Ccos%5Ctheta%3D1)
![\sqrt{2}\sin\theta=-1](https://tex.z-dn.net/?f=%5Csqrt%7B2%7D%5Csin%5Ctheta%3D-1)
Cosine is negative and Sine is positive.
Thus, angle lie in IV quadrant.
![\theta=\tan^{-1}(-1)](https://tex.z-dn.net/?f=%5Ctheta%3D%5Ctan%5E%7B-1%7D%28-1%29)
![\theta=360-45=315^\circ](https://tex.z-dn.net/?f=%5Ctheta%3D360-45%3D315%5E%5Ccirc)
Cartesian to polar
![(1,-1)\rightarrow (\sqrt{2},315^\circ)](https://tex.z-dn.net/?f=%281%2C-1%29%5Crightarrow%20%28%5Csqrt%7B2%7D%2C315%5E%5Ccirc%29)
Hence, The polar coordinate is ![(\sqrt{2},315^\circ)](https://tex.z-dn.net/?f=%28%5Csqrt%7B2%7D%2C315%5E%5Ccirc%29)