We know that:

There is also an interesting property that relates the sine and the cosine of an angle:

We can find the cosine of theta using this equation:
![\begin{gathered} \cos ^2(\theta_1)=1-\sin ^2(\theta_1) \\ \cos (\theta_1)=\sqrt{1-\sin^2(\theta_1)} \\ \cos (\theta_1)=\sqrt[]{1-(-\frac{12}{13})^2} \\ \lvert\cos (\theta_1)\rvert=\sqrt[]{1-\frac{144}{169}}=\sqrt[]{\frac{25}{169}} \\ \lvert\cos (\theta_1)\rvert=\frac{5}{13} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ccos%20%5E2%28%5Ctheta_1%29%3D1-%5Csin%20%5E2%28%5Ctheta_1%29%20%5C%5C%20%5Ccos%20%28%5Ctheta_1%29%3D%5Csqrt%7B1-%5Csin%5E2%28%5Ctheta_1%29%7D%20%5C%5C%20%5Ccos%20%28%5Ctheta_1%29%3D%5Csqrt%5B%5D%7B1-%28-%5Cfrac%7B12%7D%7B13%7D%29%5E2%7D%20%5C%5C%20%5Clvert%5Ccos%20%28%5Ctheta_1%29%5Crvert%3D%5Csqrt%5B%5D%7B1-%5Cfrac%7B144%7D%7B169%7D%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7B25%7D%7B169%7D%7D%20%5C%5C%20%5Clvert%5Ccos%20%28%5Ctheta_1%29%5Crvert%3D%5Cfrac%7B5%7D%7B13%7D%20%5Cend%7Bgathered%7D)
Since theta is in the third quadrant then its cosine must be a negative number so:
3 different sizes.
3 different colors.
Total outcomes: number of sizes x number of colors.
3 x 3 = 9
There are 9 total outcomes.
Answer:
2 and 6 for the circles.
-18 for the square.
Step-by-step explanation:
-3 times a number is -6.

The number is 2.
2 times a number is 12.

The number is 6.
6 times -3.

The number is -18.
Answer:
dont you just subtract 90-61 to get 29 since a triangle is 90 degrees
Answer: was that not the answer
Step-by-step explanation: