1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
EastWind [94]
3 years ago
5

The data set represents the total number of tickets each person purchased for a play.

Mathematics
1 answer:
ozzi3 years ago
8 0
Answer

1.5

Solution

The median is the middle number
You might be interested in
A bag contains 6 blue counters and 4 red counters. I take two counters out at random. My
Step2247 [10]

Answer:

Possible outcome=6+4=10

P(red counter)=2/10=1/5

6 0
2 years ago
Solve 3-(2x-5)<-4(x+2)
azamat

Answer:

Step-by-step explanation:

3-(2x-5)=-4(x+2)

We simplify the equation to the form, which is simple to understand

3-(2x-5)=-4(x+2)

Remove unnecessary parentheses

3-2x+5=-4*(x+2)

Reorder the terms in parentheses

3-2x+5=+(-4x-8)

Remove unnecessary parentheses

+3-2x+5=-4x-8

We move all terms containing x to the left and all other terms to the right.

-2x+4x=-8-3-5

We simplify left and right side of the equation.

+2x=-16

We divide both sides of the equation by 2 to get x.

x=-8

7 0
2 years ago
Read 2 more answers
A method of solving a system of equations in which one variable is replaced by an expression using the other variable as a repre
Tanya [424]
I believe it is referred to as The Substitution Method.
3 0
3 years ago
Read 2 more answers
Put the numbers in order from smallest to largest <br><br> -10,-1,0,10,1
kupik [55]

Answer:

The order is (-10,-1,0,1,10)

4 0
3 years ago
Read 2 more answers
Particle P moves along the y-axis so that its position at time t is given by y(t)=4t−23 for all times t. A second particle, part
sergey [27]

a) The limit of the position of particle Q when time approaches 2 is -\pi.

b) The velocity of particle Q is v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t -\sin \pi t}{(2-t)^{2}} for all t \ne 2.

c) The rate of change of the distance between particle P and particle Q at time t = \frac{1}{2} is \frac{4\sqrt{82}}{9}.

<h3>How to apply limits and derivatives to the study of particle motion</h3>

a) To determine the limit for t = 2, we need to apply the following two <em>algebraic</em> substitutions:

u = \pi t (1)

k = 2\pi - u (2)

Then, the limit is written as follows:

x(t) =  \lim_{t \to 2} \frac{\sin \pi t}{2-t}

x(t) =  \lim_{t \to 2} \frac{\pi\cdot \sin \pi t}{2\pi - \pi t}

x(u) =  \lim_{u \to 2\pi} \frac{\pi\cdot \sin u}{2\pi - u}

x(k) =  \lim_{k \to 0} \frac{\pi\cdot \sin (2\pi-k)}{k}

x(k) =  -\pi\cdot  \lim_{k \to 0} \frac{\sin k}{k}

x(k) = -\pi

The limit of the position of particle Q when time approaches 2 is -\pi. \blacksquare

b) The function velocity of particle Q is determined by the <em>derivative</em> formula for the division between two functions, that is:

v_{Q}(t) = \frac{f'(t)\cdot g(t)-f(t)\cdot g'(t)}{g(t)^{2}} (3)

Where:

  • f(t) - Function numerator.
  • g(t) - Function denominator.
  • f'(t) - First derivative of the function numerator.
  • g'(x) - First derivative of the function denominator.

If we know that f(t) = \sin \pi t, g(t) = 2 - t, f'(t) = \pi \cdot \cos \pi t and g'(x) = -1, then the function velocity of the particle is:

v_{Q}(t) = \frac{\pi \cdot \cos \pi t \cdot (2-t)-\sin \pi t}{(2-t)^{2}}

v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t -\sin \pi t}{(2-t)^{2}}

The velocity of particle Q is v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t -\sin \pi t}{(2-t)^{2}} for all t \ne 2. \blacksquare

c) The vector <em>rate of change</em> of the distance between particle P and particle Q (\dot r_{Q/P} (t)) is equal to the <em>vectorial</em> difference between respective vectors <em>velocity</em>:

\dot r_{Q/P}(t) = \vec v_{Q}(t) - \vec v_{P}(t) (4)

Where \vec v_{P}(t) is the vector <em>velocity</em> of particle P.

If we know that \vec v_{P}(t) = (0, 4), \vec v_{Q}(t) = \left(\frac{2\pi\cdot \cos \pi t - \pi\cdot t \cdot \cos \pi t + \sin \pi t}{(2-t)^{2}}, 0 \right) and t = \frac{1}{2}, then the vector rate of change of the distance between the two particles:

\dot r_{P/Q}(t) = \left(\frac{2\pi \cdot \cos \pi t - \pi\cdot t \cdot \cos \pi t + \sin \pi t}{(2-t)^{2}}, -4 \right)

\dot r_{Q/P}\left(\frac{1}{2} \right) = \left(\frac{2\pi\cdot \cos \frac{\pi}{2}-\frac{\pi}{2}\cdot \cos \frac{\pi}{2} +\sin \frac{\pi}{2}}{\frac{3}{2} ^{2}}, -4 \right)

\dot r_{Q/P} \left(\frac{1}{2} \right) = \left(\frac{4}{9}, -4 \right)

The magnitude of the vector <em>rate of change</em> is determined by Pythagorean theorem:

|\dot r_{Q/P}| = \sqrt{\left(\frac{4}{9} \right)^{2}+(-4)^{2}}

|\dot r_{Q/P}| = \frac{4\sqrt{82}}{9}

The rate of change of the distance between particle P and particle Q at time t = \frac{1}{2} is \frac{4\sqrt{82}}{9}. \blacksquare

<h3>Remark</h3>

The statement is incomplete and poorly formatted. Correct form is shown below:

<em>Particle </em>P<em> moves along the y-axis so that its position at time </em>t<em> is given by </em>y(t) = 4\cdot t - 23<em> for all times </em>t<em>. A second particle, </em>Q<em>, moves along the x-axis so that its position at time </em>t<em> is given by </em>x(t) = \frac{\sin \pi t}{2-t}<em> for all times </em>t \ne 2<em>. </em>

<em />

<em>a)</em><em> As times approaches 2, what is the limit of the position of particle </em>Q?<em> Show the work that leads to your answer. </em>

<em />

<em>b) </em><em>Show that the velocity of particle </em>Q<em> is given by </em>v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t +\sin \pi t}{(2-t)^{2}}<em>.</em>

<em />

<em>c)</em><em> Find the rate of change of the distance between particle </em>P<em> and particle </em>Q<em> at time </em>t = \frac{1}{2}<em>. Show the work that leads to your answer.</em>

To learn more on derivatives, we kindly invite to check this verified question: brainly.com/question/2788760

3 0
2 years ago
Other questions:
  • Step 1: 1x-21+3=7 step 2: 1x-21=7-3 step 3: 1x-21=4 what would the next step be to solve equation
    8·1 answer
  • PLEASE HELP ASAP !!!
    5·1 answer
  • Write the rule for the table below help me pleaseeeeeeeeee
    15·1 answer
  • 3. If the coordinates of the two points 1 point
    8·1 answer
  • 3) 8p + 7q = 43<br>2 -7=-q<br>how can I solve this with substitution?​
    6·1 answer
  • According to company records, 128 of 460 employees purchase health insurance through the company. The chief human resources offi
    12·1 answer
  • Put the following equation of a line into slope-intercept form, simplifying all fractions. 18x + 3y = -21 ​
    5·2 answers
  • HELP ME please this is due tomorrow
    10·1 answer
  • Express tan M as a fraction in simplest terms.<br> Help please
    5·1 answer
  • Help please plase please ples ples ples
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!