Answer:
ΔEFG is an isosceles triangle.
Step-by-step explanation:
Given:
E (0, 0),
F (−7, 4),
G (0, 8)
ΔEFG
Solution:
Distance formula
Distance d = ![\sqrt{(x_2-x_1)^2 +( y_2-y_1)^2](https://tex.z-dn.net/?f=%5Csqrt%7B%28x_2-x_1%29%5E2%20%2B%28%20y_2-y_1%29%5E2)
Step 1: Finding the length of EF
By using distance formula,
![EF = \sqrt{(-7 - 0)^2 + (4-0)^2}](https://tex.z-dn.net/?f=EF%20%3D%20%5Csqrt%7B%28-7%20-%200%29%5E2%20%2B%20%284-0%29%5E2%7D)
![EF = \sqrt{(49) + (16)}](https://tex.z-dn.net/?f=EF%20%3D%20%5Csqrt%7B%2849%29%20%2B%20%2816%29%7D)
![EF = \sqrt{(49) + (16)}\\EF = \sqrt{65}\\](https://tex.z-dn.net/?f=EF%20%3D%20%5Csqrt%7B%2849%29%20%2B%20%2816%29%7D%5C%5CEF%20%3D%20%5Csqrt%7B65%7D%5C%5C)
Step 2: Finding the length of FG
By using distance formula,
![FG = \sqrt{(0-(-7))^2+(8-4)^2}\\FG = \sqrt{(7)^2 +(4)^2}\\FG = \sqrt{49 +16}\\FG = \sqrt{65}](https://tex.z-dn.net/?f=FG%20%3D%20%5Csqrt%7B%280-%28-7%29%29%5E2%2B%288-4%29%5E2%7D%5C%5CFG%20%3D%20%5Csqrt%7B%287%29%5E2%20%2B%284%29%5E2%7D%5C%5CFG%20%3D%20%5Csqrt%7B49%20%2B16%7D%5C%5CFG%20%3D%20%5Csqrt%7B65%7D)
Step 2: Finding the length of GE
![GE= \sqrt{(0-0)^2 + (0-8)^2}\\\\GE =\sqrt{(-8)^2}\\GE = \sqrt{64}\\GE = 8](https://tex.z-dn.net/?f=GE%3D%20%5Csqrt%7B%280-0%29%5E2%20%2B%20%280-8%29%5E2%7D%5C%5C%5C%5CGE%20%3D%5Csqrt%7B%28-8%29%5E2%7D%5C%5CGE%20%3D%20%5Csqrt%7B64%7D%5C%5CGE%20%3D%208)
Thus we could see that the sides EF = FG
So it is a isosceles triangle.