Answer:
a) K = 0.63 J, b) h = 0.153 m
Explanation:
a) In this exercise we have a physical pendulum since the rod is a material object, the angular velocity is
w² =
where d is the distance from the pivot point to the center of mass and I is the moment of inertia.
The rod is a homogeneous body so its center of mass is at the geometric center of the rod.
d = L / 2
the moment of inertia of the rod is the moment of a rod supported at one end
I = ⅓ m L²
we substitute
w =
w =
w =
w = 4.427 rad / s
an oscillatory system is described by the expression
θ = θ₀ cos (wt + Φ)
the angular velocity is
w = dθ /dt
w = - θ₀ w sin (wt + Ф)
In this exercise, the kinetic energy is requested in the lowest position, in this position the energy is maximum. For this expression to be maximum, the sine function must be equal to ±1
In the exercise it is indicated that at the lowest point the angular velocity is
w = 4.0 rad / s
the kinetic energy is
K = ½ I w²
K = ½ (⅓ m L²) w²
K = 1/6 m L² w²
K = 1/6 0.42 0.75² 4.0²
K = 0.63 J
b) for this part let's use conservation of energy
starting point. Lowest point
Em₀ = K = ½ I w²
final point. Highest point
Em_f = U = m g h
energy is conserved
Em₀ = Em_f
½ I w² = m g h
½ (⅓ m L²) w² = m g h
h = 1/6 L² w² / g
h = 1/6 0.75² 4.0² / 9.8
h = 0.153 m
Answer:
Yes. Inertia keeps the speed maintained though my feet leave the ground.
Explanation:
Inertia is the resistance to the change in position of any object this means this resistance will keep me traveling at 30 km/s relative to the sun. If the person wants to change the position we apply force to do that because inertia is opposing us to not do that. We are always traveling with 30km/s relative to sun due to inertia.
Rise over run at 1 second
It’s the same slope from 0 to 2 seconds
10/2=5mps
As a note all time points between 0and 2 will have this instantaneous velocity
Instantaneous velocity at time 2 is 0
Answer:
(a) 1.58 V
(b) 0.0126 Wb
(c) 0.0493 V
Solution:
As per the question:
No. of turns in the coil, N = 400 turns
Self Inductance of the coil, L = 7.50 mH =
Current in the coil, i =
A
where

Now,
(a) To calculate the maximum emf:
We know that maximum emf induced in the coil is given by:

![e = L\frac{d}{dt}(1680)cos[\frac{\pi t}{0.0250}]](https://tex.z-dn.net/?f=e%20%3D%20L%5Cfrac%7Bd%7D%7Bdt%7D%281680%29cos%5B%5Cfrac%7B%5Cpi%20t%7D%7B0.0250%7D%5D)
![e = - 7.50\times 10^{- 3}\times \frac{\pi}{0.0250}\times \frac{d}{dt}(1680)sin[\frac{\pi t}{0.0250}]](https://tex.z-dn.net/?f=e%20%3D%20-%207.50%5Ctimes%2010%5E%7B-%203%7D%5Ctimes%20%5Cfrac%7B%5Cpi%7D%7B0.0250%7D%5Ctimes%20%5Cfrac%7Bd%7D%7Bdt%7D%281680%29sin%5B%5Cfrac%7B%5Cpi%20t%7D%7B0.0250%7D%5D)
For maximum emf,
should be maximum, i.e., 1
Now, the magnitude of the maximum emf is given by:

(b) To calculate the maximum average flux,we know that:

(c) To calculate the magnitude of the induced emf at t = 0.0180 s:

