Answer:
R1 + R2 = R = 12 for resistors in series - so R1 = R2 if they are identical
2 R1 = 12 and R1 = R2 = 6 ohms
1 / R = 1 / R1 + 1 / R2 for resistors in parallel
R = R1 * R2 / (R1 + R2) = 6 * 6 / (6 + 6) = 3
The equivalent resistance would be 3 ohms if connected in parallel
The correct answer to this qustion is velocity and time
Answer:
about 2.7liters for women and 3.7liters for men
Explanation:
Answer: Both cannonballs will hit the ground at the same time.
Explanation:
Suppose that a given object is on the air. The only force acting on the object (if we ignore air friction and such) will be the gravitational force.
then the acceleration equation is only on the vertical axis, and can be written as:
a(t) = -(9.8 m/s^2)
Now, to get the vertical velocity equation, we need to integrate over time.
v(t) = -(9.8 m/s^2)*t + v0
Where v0 is the initial velocity of the object in the vertical axis.
if the object is dropped (or it only has initial velocity on the horizontal axis) then v0 = 0m/s
and:
v(t) = -(9.8 m/s^2)*t
Now, if two objects are initially at the same height (both cannonballs start 1 m above the ground)
And both objects have the same vertical velocity, we can conclude that both objects will hit the ground at the same time.
You can notice that the fact that one ball is fired horizontally and the other is only dropped does not affect this, because we only analyze the vertical problem, not the horizontal one. (This is something useful to remember, we can separate the vertical and horizontal movement in these type of problems)
Answer: The cylinder
Explanation:
Among all other solid shapes, the sphere has the smallest area for a given volume.
By experiment, the ratio of the radius of a sphere to a cylinder of equal volume is less than 1.
Recall;
That the Rate of transfer of convective heat (Q) = h × A ×change in temperature.
Where ,
h= the co efficient of convective heat transfer
A= the cross sectional area.
As such, since the sphere has a smaller surface area relative to the cylinder, the sphere transfers heat slower than the cylinder.
Therefore, if the sphere and cylinder are exposed to convection in the same environment, then, the cylinder cools faster.
PS; the more the Area, the higher the rate of heat transfer and vice versa.