It would be: Activation Energy = 300 KJ
Hope this helps!
<h2>Answer:</h2>
0
<h2>Explanation:</h2>
Since the current carrying wire is placed along the axis of the cylinder, according to the right hand rule, the magnetic field will be tangent to the surface of the cylinder. Therefore, there is no magnetic field through the cylinder.
Remember that the magnetic flux through a given area is the total magnetic field passing through that area. Since there is not magnetic field through the cylinder, the total magnetic flux is therefore zero (0).
Answer:
-1.2 kg - m/s
Explanation:
And we need to find out the change in momentum of the body . Here ,
- velocity before collision (u) = 10m/s
- velocity after collision (v) = 2m/s .
We know that momentum is defined as amount of motion contained in a body . Mathematically ,
Therefore change in momentum will be,
Since the direction of velocity changes after the collision , the velocity will be -2m/s .
Answer:
-5.24 m/s
** The minus sign indicates that the velocity vector points in the opposite direction with respect to the initial direction of the 77.8 kg player **
Explanation:
Hi!
We can solve this problem considering each player as a point particle and taking into account the conservation of linear momentum.
Since the 99.8 kg player is moving towards the 77.8kg, the initial total momentum is:
m1*v1_i + m2*v2_i = (77.8kg)(8.1 m/s) - (99.8kg)(6.9 m/s)
** The minus sign indicates that the velocity vector points in the opposite direction with respect to the initial direction of the 77.8 kg player **
The final total momentum is equal to:
m1*v1_f + m2*v2_f = (77.8 kg)v1_f + (99.8 kg)(3.5 m/s)
The conservation of momentu tell us that:
m1v1_i + m2v2_i = m1v1_f + m2v2_f
Therefore:
v1_f =v1_i + (m2/m1)*(v2_i-v2_f)
v1_f = 8.1 m/s + (99.8 / 77.8) * (-6.9 - 3.5 m/s)
<u>v1_f = -5.24 m/s</u>
Answer:500hz
Explanation:
Frequency=velocity/wavelength
Frequency=1500/3
Frequency=500hz