Answer:
Oxidizing agent - CrO4^2-
Reducing agent- N2O
Explanation:
Let us look at the equation closely;
CrO4^2- (aq) + 3N2O(g) ------------> Cr^3+ (aq) + 3NO(g) [acidic]
The reduction half equation is;
CrO4^2- (aq) + 3e -------->Cr^3+ (aq)
Oxidation half equation is;
3N2O(g) ------>3 NO(g) +3 e
Note that the oxidizing agent participates in the reduction half equation while the reducing agent participates in the oxidation half equation as seen above.
Answer:
V = 10.3 L
Explanation:
Given data:
Mass of methane = 6.40 g
Volume of CO₂ produced = ?
Temperature = 35°C (35+273 = 308 K)
Pressure = 100.0 KPa (100.0/101 = 0.98 atm)
Solution:
Chemical equation:
CH₄ + 2O₂ → CO₂ + 2H₂O
Number of moles of CH₄:
Number of moles = mass/molar mass
Number of moles = 6.40 g/ 16 g/mol
Number of moles = 0.4 mol
Now we will compare the moles of CO₂ with CH₄.
CH₄ : CO₂
1 : 1
0.4 : 0.4
Volume of CO₂:
Formula:
PV = nRT
0.98 atm ×V = 0.4 mol ×0.0821 atm.L/mol.K × 308 K
0.98 atm ×V = 10.11 atm.L
V = 10.11 atm.L /0.98 atm
V = 10.3 L
The balanced chemical equation between iron and oxygen to produce iron (III) oxide is,

Mass of Fe = 227.8 g
Moles of Fe = 
Mass of oxygen = 128 g
Moles of 
Calculating the limiting reactant: The reactant that produces the least amount of product will be the limiting reactant.
Mass of iron (III) oxide produced from Iron = 
Mass of iron (III) oxide produced from oxygen=
Iron (Fe) produces the least amount of the product iron (III) oxide. So, Fe is the limiting reactant.
the correct combo is C
We know sunlight is key factor in photosynthesis so A and D are out.
we also know plants get their bulk by breaking up co2 and using the carbon which releases oxygen as a byproduct so B is also out of the question.
Complete balanced equation: 2HNO₃ + Ca(OH)₂ → Ca(NO₃)₂ + 2H₂O
Ionized equation (with spectator ions):
2H⁺ + 2NO₃⁻ + Ca²⁺ + 2OH⁻ → Ca²⁺ + 2NO₃⁻ + 2H₂O
By eliminating the ions that are the same of both sides of the equation (spectator ions):
2H⁺ + 2OH⁻ → 2H₂O [Net Ionic Equation]