Answer:
Explanation:
The given reaction equation is:
2A + 4B → C + 3D
We know the mass of compound A in the reaction above. We are to find the mass of compound D.
We simply work from the known mass to calculate the mass of the unkown compound D
Using the mole concept, we can find the unknown mass.
Procedures
- We first find the molar mass of the compound A from the atomic units of the constituent elements.
- We then use the molar mass of A to calculate its number of moles using the expression below:
Number of moles of A =
- Using the known number of moles of A, we can work out the number of moles of D.
From the balanced equation of the reaction, it is shown that:
2 moles of compound A was used up to produced 3 moles of D
Then x number of moles of A would give the number of moles of D
- Now that we know the number of moles of D, we can find its mass using the expression below:
Mass of D = number of moles of D x molar mass of D
The correct answer is letter D: Quartz.
Answer is: molarity of hydrofluoric solution is 0.09 M.
Chemical reaction: HF(aq) + KOH(aq) → KF(aq) + H₂O(l).
V(HF) = 30.0 mL.
c(KOH) = 0.122 M.
V(KOH) = 22.15 mL:
c(HF) = ?.
From chemical reaction: n(HF) : n(KOH) = 1 : 1.
n(HF) = n(KOH).
c(HF) · V(HF) = c(KOH) · V(KOH).
c(HF) = c(KOH) · V(KOH) ÷ V(HF).
c(HF) = 0.122 M · 22.15 mL ÷ 30 mL:
c(HF) = 0.09 M.