Answer:
The standard deviation of number of hours worked per week for these workers is 3.91.
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by

After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X. Subtracting 1 by the pvalue, we This p-value is the probability that the value of the measure is greater than X.
In this problem we have that:
The average number of hours worked per week is 43.4, so
.
Suppose 12% of these workers work more than 48 hours. Based on this percentage, what is the standard deviation of number of hours worked per week for these workers.
This means that the Z score of
has a pvalue of 0.88. This is Z between 1.17 and 1.18. So we use
.





The standard deviation of number of hours worked per week for these workers is 3.91.
The expression will be x-3.
First, you would create an equation for this problem.
-27 + 13
Now, all you would have to do is solve it.
-27 + 13 = -14
By 2 pm the temperature was -14 degrees.
I hope this helps!
The correct answer is 5, 3. As x increases by 1, y increases by 1 as well.
Therefore the answer is 5, 3