Answer:
M = 5742π
Step-by-step explanation:
Given:-
- Find the mass of a solid with the density ( ρ ):
ρ ( r, θ , z ) = 1 + z / 81
- The solid is bounded by the planes:
0 ≤ z ≤ 81 - r^2
0 ≤ r ≤ 9
Find:-
Find the mass of the solid paraboloid
Solution:-
- The mass (M) of any solid body is given by the following triple integral formulation:

- We can write the above expression in cylindrical coordinates:
![M = \int\limits\int\limits_r\int\limits_z {r*p(r,theta,z)} \, dz.dr.dtheta \\\\M = \int\limits\int\limits_r\int\limits_z {r*[ 1 + \frac{z}{81}] } \, dz.dr.dtheta\\\\](https://tex.z-dn.net/?f=M%20%3D%20%5Cint%5Climits%5Cint%5Climits_r%5Cint%5Climits_z%20%7Br%2Ap%28r%2Ctheta%2Cz%29%7D%20%5C%2C%20dz.dr.dtheta%20%5C%5C%5C%5CM%20%3D%20%5Cint%5Climits%5Cint%5Climits_r%5Cint%5Climits_z%20%7Br%2A%5B%201%20%2B%20%5Cfrac%7Bz%7D%7B81%7D%5D%20%7D%20%5C%2C%20dz.dr.dtheta%5C%5C%5C%5C)
- Perform integration:
![M = \int\limits\int\limits_r{r*[ z + \frac{z^2}{162}] } \,|_0^8^1^-^r^2 dr.dtheta\\\\M = \int\limits\int\limits_r{r*[ 81-r^2 + \frac{(81-r^2)^2}{162}] } \, dr.dtheta\\\\M = \int\limits\int\limits_r{r*[ 81-r^2 + \frac{6561 -162r + r^2}{162}] } \, dr.dtheta\\\\M = \int\limits\int\limits_r{r*[ 81-r^2 + 40.5 -r +\frac{r^2}{162} ] } \, dr.dtheta\\\\M = \int\limits\int\limits_r{[ 121.5r-r^2 -\frac{161r^3}{162} ] } \, dr.dtheta\\\\](https://tex.z-dn.net/?f=M%20%3D%20%5Cint%5Climits%5Cint%5Climits_r%7Br%2A%5B%20z%20%2B%20%5Cfrac%7Bz%5E2%7D%7B162%7D%5D%20%7D%20%5C%2C%7C_0%5E8%5E1%5E-%5Er%5E2%20dr.dtheta%5C%5C%5C%5CM%20%3D%20%5Cint%5Climits%5Cint%5Climits_r%7Br%2A%5B%2081-r%5E2%20%2B%20%5Cfrac%7B%2881-r%5E2%29%5E2%7D%7B162%7D%5D%20%7D%20%5C%2C%20dr.dtheta%5C%5C%5C%5CM%20%3D%20%5Cint%5Climits%5Cint%5Climits_r%7Br%2A%5B%2081-r%5E2%20%2B%20%5Cfrac%7B6561%20-162r%20%2B%20r%5E2%7D%7B162%7D%5D%20%7D%20%5C%2C%20dr.dtheta%5C%5C%5C%5CM%20%3D%20%5Cint%5Climits%5Cint%5Climits_r%7Br%2A%5B%2081-r%5E2%20%2B%2040.5%20-r%20%2B%5Cfrac%7Br%5E2%7D%7B162%7D%20%5D%20%7D%20%5C%2C%20dr.dtheta%5C%5C%5C%5CM%20%3D%20%5Cint%5Climits%5Cint%5Climits_r%7B%5B%20121.5r-r%5E2%20-%5Cfrac%7B161r%5E3%7D%7B162%7D%20%5D%20%7D%20%5C%2C%20dr.dtheta%5C%5C%5C%5C)
- The mass evaluated is M = 5742π
Answer:
There are ways for quickly multiply out a binomial that's being raised by an exponent. Like
(a + b)0 = 1
(a + b)1 = a + b
(a + b)2 = a2 + 2ab + b2
(a + b)3 = (a + b)(a + b)2 = (a + b)(a2 + 2ab + b2) = a3 + 3a2b + 3ab2 + b3
and so on and so on
but there was this mathematician named Blaise Pascal and he found a numerical pattern, called Pascal's Triangle, for quickly expanding a binomial like the ones from earlier. It looks like this
1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
Pascal's Triangle gives us the coefficients for an expanded binomial of the form (a + b)n, where n is the row of the triangle.
Hope this helps!
Answer:
(a)There are 24 cakes in total
(b)There are 15 pieces of cakes left
Step-by-step explanation:
Let the total cakes=x
Let number of cakes eaten by Mindy=m
Let number of cakes eaten by Troy=t
Now:
m=3
Since m+t=9
3+t=9
t=9-3=6
The Number of Pieces of Cake Left in Total=x-(t+m)
Since Troy had
of the total cake


x=6X4=24
(a)There are 24 cakes in total
(b)The Number of Pieces of Cake Left in Total=x-(t+m)=24-9=15 cakes
Answer:
Quadrant IV is always in the bottom right corner.
Assuming you're rounding to the nearest ten-thousand, Smallest is 165,000and largest is 174,000