Answer:
Toshi must begin his walk at 11:00 AM in order that he can return by 8:00 PM.
Step-by-step explanation:
Since the Gotemba walking trail up Mount Fuji is about 9km long, and walkers need to return from the 18km walk by 8pm, if Toshi estimates that he can walk up the mountain at 1.5km / h on average, and down at twice that speed , these speeds taking into account meal breaks and rest times, to determine what is the latest time he can begin his walk so that he can return by 8pm the following calculation must be performed:
Climb: 1.5 km / h
Descent: 2 x 1.5 km / h = 3 km / h
Climb: 9 km / 1.5 km / h = 6 hours
Descent: 9km / 3 km / h = 3 hours
Total: 9 hours
8 PM = 20:00
20:00 - 09:00 = 11:00
Thus, Toshi must begin his walk at 11:00 AM in order that he can return by 8:00 PM.
Compound interest
P(1+rate/100)^years
However, this questions would be easier using simple interest with calculations here.
First year — $35000x102% = $35700
Second year — $35700x102% = $36414
Third year — $36414x102% = $37142.28
Note : don’t include the dollar sign.
Answer:
Step-by-step explanation:
Let the other side of the rectangle be y. The perimeter of the rectangle is expressed as P = 2(x+y)
Given P = 30ft, on substituting P = 30 into the expression;
30 = 2(x+y)
x+y = 15
y = 15-x
Also since the area of the rectangle is xy;
A = xy
Substitute y = 15-x into the area;
A = x(15-x)
A = 15x-x²
The function that models its area A in terms of the length x of one of its sides is A = 15x-x²
The side of length x yields the greatest area when dA/dx = 0
dA/dx = 15-2x
15-2x = 0
-2x = -15
x = -15/-2
x = 7.5 ft
Hence the side length, x that yields the greatest area is 7.5ft.
Since y = 15-x
y = 15-7.5
y = 7.5
Area of the rectangle = 7.5*7.5
Area of the rectangle = 56.25ft²
Diagram:
M------------O-------------N
................. ^ midpoint
Obviously if O is the *mid*point, then it is exactly halfway between M and N. That also means it has bisected the segment into two equal parts.
On one side you have MO (or OM, if you like)
On the other side you have ON.
In order for O to be the midpoint:
ON = OM