What I always do to solve this, is find a common factor for each number first.
Usually 4 or 5 works best. I'll use 4.
4 goes into 80 20 times, which means that 4 = 5% of 80.
If 4 = 5%, and 48 = 12 x 4, then 48 must equal 60% of 80.
(Another way to solve this problem is: simplify 48 / 80. This simplifies to 3/5.
3/5 = 60%)!
Answer:
-8x + 16
Step-by-step explanation:
This is called expanding brackets in algebra
1. you need to multiply the numeral on outside of the brackets with each of thosse on the inside
-4 x 2x = 8x
-4 x -4 = 16
Answer:
In order to find the variance we need to calculate first the second moment given by:
And the variance is given by:
![Var(X) = E(X^2) +[E(X)]^2 = 23.36 -[4.74]^2 = 0.8924](https://tex.z-dn.net/?f=%20Var%28X%29%20%3D%20E%28X%5E2%29%20%2B%5BE%28X%29%5D%5E2%20%3D%2023.36%20-%5B4.74%5D%5E2%20%3D%200.8924)
And the deviation would be:

Step-by-step explanation:
Previous concepts
The expected value of a random variable X is the n-th moment about zero of a probability density function f(x) if X is continuous, or the weighted average for a discrete probability distribution, if X is discrete.
The variance of a random variable X represent the spread of the possible values of the variable. The variance of X is written as Var(X).
Solution to the problem
For this case we have the following distribution given:
X 3 4 5 6
P(X) 0.07 0.4 0.25 0.28
We can calculate the mean with the following formula:

In order to find the variance we need to calculate first the second moment given by:

And the variance is given by:
![Var(X) = E(X^2) +[E(X)]^2 = 23.36 -[4.74]^2 = 0.8924](https://tex.z-dn.net/?f=%20Var%28X%29%20%3D%20E%28X%5E2%29%20%2B%5BE%28X%29%5D%5E2%20%3D%2023.36%20-%5B4.74%5D%5E2%20%3D%200.8924)
And the deviation would be:

![\bf 343^{\frac{2}{3}}+36^{\frac{1}{2}}-256^{\frac{3}{4}}\qquad \begin{cases} 343=7\cdot 7\cdot 7\\ \qquad 7^3\\ 36=6\cdot 6\\ \qquad 6^2\\ 256=4\cdot 4\cdot 4\cdot 4\\ \qquad 4^4 \end{cases}\\\\\\ (7^3)^{\frac{2}{3}}+(6^2)^{\frac{1}{2}}-(4^4)^{\frac{3}{4}} \\\\\\ \sqrt[3]{(7^3)^2}+\sqrt[2]{(6^2)^1}-\sqrt[4]{(4^4)^3}\implies \sqrt[3]{(7^2)^3}+\sqrt[2]{(6^1)^2}-\sqrt[4]{(4^3)^4} \\\\\\ 7^2+6-4^3\implies 49+6-64\implies -9](https://tex.z-dn.net/?f=%5Cbf%20343%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%2B36%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D-256%5E%7B%5Cfrac%7B3%7D%7B4%7D%7D%5Cqquad%20%5Cbegin%7Bcases%7D%0A343%3D7%5Ccdot%207%5Ccdot%207%5C%5C%0A%5Cqquad%207%5E3%5C%5C%0A36%3D6%5Ccdot%206%5C%5C%0A%5Cqquad%206%5E2%5C%5C%0A256%3D4%5Ccdot%204%5Ccdot%204%5Ccdot%204%5C%5C%0A%5Cqquad%204%5E4%0A%5Cend%7Bcases%7D%5C%5C%5C%5C%5C%5C%20%287%5E3%29%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%2B%286%5E2%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D-%284%5E4%29%5E%7B%5Cfrac%7B3%7D%7B4%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Csqrt%5B3%5D%7B%287%5E3%29%5E2%7D%2B%5Csqrt%5B2%5D%7B%286%5E2%29%5E1%7D-%5Csqrt%5B4%5D%7B%284%5E4%29%5E3%7D%5Cimplies%20%5Csqrt%5B3%5D%7B%287%5E2%29%5E3%7D%2B%5Csqrt%5B2%5D%7B%286%5E1%29%5E2%7D-%5Csqrt%5B4%5D%7B%284%5E3%29%5E4%7D%0A%5C%5C%5C%5C%5C%5C%0A7%5E2%2B6-4%5E3%5Cimplies%2049%2B6-64%5Cimplies%20-9)
to see what you can take out of the radical, you can always do a quick "prime factoring" of the values, that way you can break it in factors to see who is what.
Answer:
<h2>
y = -5</h2>
Step-by-step explanation:
y = 3x − 26
2x − y = 19
2x - (3x - 26) = 19
2x - 3x + 26 = 19
- x = - 7
x = 7
y = 3•7 -26 = 21 - 26 = - 5