1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ann [662]
4 years ago
13

An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The el

ectric field in the wire changes with time as E(t)=0.0004t2−0.0001t+0.0004 newtons per coulomb, where time is measured in seconds.
Physics
1 answer:
Tresset [83]4 years ago
5 0

Complete Question

An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The electric field in the wire changes with time as E(t)=0.0004t2−0.0001t+0.0004 newtons per coulomb, where time is measured in seconds.

I = 1.2 A at time 5 secs.

Find the charge Q passing through a cross-section of the conductor between time 0 seconds and time 5 seconds.

Answer:

The charge is  Q =2.094 C

Explanation:

From the question we are told that

    The diameter of the wire is  d =  0.205cm = 0.00205 \ m

     The radius of  the wire is  r =  \frac{0.00205}{2} = 0.001025  \ m

     The resistivity of aluminum is 2.75*10^{-8} \ ohm-meters.

       The electric field change is mathematically defied as

         E (t) =  0.0004t^2 - 0.0001 +0.0004

     

Generally the charge is  mathematically represented as

       Q = \int\limits^{t}_{0} {\frac{A}{\rho} E(t) } \, dt

Where A is the area which is mathematically represented as

       A =  \pi r^2 =  (3.142 * (0.001025^2)) = 3.30*10^{-6} \ m^2

 So

       \frac{A}{\rho} =  \frac{3.3 *10^{-6}}{2.75 *10^{-8}} =  120.03 \ m / \Omega

Therefore

      Q = 120 \int\limits^{t}_{0} { E(t) } \, dt

substituting values

      Q = 120 \int\limits^{t}_{0} { [ 0.0004t^2 - 0.0001t +0.0004] } \, dt

     Q = 120 [ \frac{0.0004t^3 }{3} - \frac{0.0001 t^2}{2} +0.0004t] }  \left | t} \atop {0}} \right.

From the question we are told that t =  5 sec

           Q = 120 [ \frac{0.0004t^3 }{3} - \frac{0.0001 t^2}{2} +0.0004t] }  \left | 5} \atop {0}} \right.

          Q = 120 [ \frac{0.0004(5)^3 }{3} - \frac{0.0001 (5)^2}{2} +0.0004(5)] }

         Q =2.094 C

     

Vaisar
2 years ago
Sorry, but how do you get the mathematical representation of the charge?
You might be interested in
Which of the following is not a characteristic of a electrical potential energy?
spin [16.1K]
It's a form of mechanical energy
8 0
3 years ago
Read 2 more answers
How do u get rid of a hacker? plz help my friend needs this
Alja [10]
IP address then call the cops
3 0
3 years ago
Read 2 more answers
You serve a volleyball with a mass of 2.5 kg. The ball leaves your hand with a speed of 23 m/s. What is the kinetic energy of th
Zarrin [17]

Answer:

661.25, I believe!

Explanation:

KE = (1/2)(2.5)(23)^2

KE=(1.25)(529)

KE= 661.25

8 0
3 years ago
Estimate the wavelength corresponding to maximum emission from each of the following surfaces: the sun, a tungsten filament at 2
igomit [66]

Answer

Applying Wein's displacement

\lamda_{max}\ T = 2898 \mu_mK

1) for sun T = 5800 K

      \lambda_{max} = \dfrac{2898}{5800}

      \lambda_{max} = 0.5 \mu_m

2) for tungsten T = 2500 K

      \lambda_{max} = \dfrac{2898}{2500}

      \lambda_{max} = 1.16 \mu_m

3) for heated metal T = 1500 K

      \lambda_{max} = \dfrac{2898}{1500}

      \lambda_{max} = 1.93 \mu_m

4) for human skin T = 305 K

      \lambda_{max} = \dfrac{2898}{305}

      \lambda_{max} = 9.50 \mu_m

5)  for cryogenically cooled metal T = 60 K

      \lambda_{max} = \dfrac{2898}{60}

      \lambda_{max} = 48.3 \mu_m

range of different spectrum

UV ----0.01-0.4

visible----0.4-0.7

infrared------0.7-100

for sun T = 5800

λ              0.01           0.4               0.7                 100

λT             58           2320            4060             5.8 x 10⁵

F                0             0.125             0.491                1

fractions

for UV = 0.125  

for visible = 0.441-0.125 = 0.366

for infrared = 1 -0.491 = 0.509  

8 0
3 years ago
The d subshell can hold up to 10 electrons in an atom.<br> true or false
Lady_Fox [76]

Answer:

true

Explanation:

5 0
3 years ago
Read 2 more answers
Other questions:
  • Extreme tides are
    9·1 answer
  • Explain how energy allows a paper clip to be attracted to a magnet
    14·2 answers
  • Which technique uses a special paper that separates a mixture into its different components with some components traveling a sho
    11·1 answer
  • Three light bulbs are connected to a battery in a series circuit.How will the bulbs behave if the circuit is closed
    8·2 answers
  • Which image shows the correct way of lining up vectors to add them together?​
    13·1 answer
  • If mechanical energy is conserved in a system the energy at any point in time can be in the form of
    11·1 answer
  • The volume of an irregular object can be measured by
    5·1 answer
  • What is potential energy
    14·2 answers
  • 1. As the angle of the ramp is increased, the normal force increases /decreases / remains the same and the friction-force increa
    11·1 answer
  • Glass does not transmit ultraviolet radiation. Suggest what happens to ultraviolet radiation when it is incident on glass. (1 ma
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!