Answer:
32000 N
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 40 m/s
Distance (s) = 10 m
Final velocity (v) = 0 m/s
Mass (m) of car = 400 Kg
Force (F) =?
Next, we shall determine the acceleration of the the car. This can be obtained as follow:
Initial velocity (u) = 40 m/s
Distance (s) = 10 m
Final velocity (v) = 0 m/s
Acceleration (a) =?
v² = u² + 2as
0² = 40² + (2 × a × 10)
0 = 1600 + 20a
Collect like terms
0 – 1600 = 20a
–1600 = 20a
Divide both side by –1600
a = –1600 / 20
a = –80 m/s²
The negative sign indicate that the car is decelerating i.e coming to rest.
Finally, we shall determine the force needed to stop the car. This can be obtained as follow:
Mass (m) of car = 400 Kg
Acceleration (a) = –80 m/s²
Force (F) =?
F = ma
F = 400 × –80
F = – 32000 N
NOTE: The negative sign indicate that the force is in opposite direction to the motion of the car.
A) one ... same current passes through each cpt
Answer:
326149.2 KJ
Explanation:
The heat transfer toward and object that suffered an increase in temperature can be calculated using the expression:
Q = m*cv*ΔT
Where m is the mass of the object, cv is the specific heat capacity at constant volume, which basically means the amount of heat necessary for a 1kg of water to increase 1C degree in temperatur, and ΔT is the change in temperature.
A 65000 L swimming pool will have a mass of:
65000L *
= 65000 kg
The specific heat capacity at constant volume of water is equal to 4.1814 KJ/KgC.
We replace the data and get:
Q = m*cv*ΔT = 65000 kg * 4.1814 KJ/KgC * 1.2°C = 326149.2 KJ
Answer:
its 1
Explanation:
Several factors can increase the rate of a chemical reaction. In general, anything that increases the number of collisions between particles will increase the reaction rate, and anything that decreases the number of collisions between particles will decrease the chemical reaction rate.
Hope this helps? :))