3:5=x:50
Therefore 5 ×x = 50
x = 10
Therefore 3 × 10 = 30
therefore 30 blue pens
proof = 30 blue + 50 red= 3+ 5
therefore 80 = 8x
You have
3/12 = x/16
Multiply by 16
16*(3/12) = x = 4
x = 4
starts with 20 smthing x3 +4 = 20 but what is it ???? hmmmm if you think more you can fiqure it out by just finding random numbers so use ur brain i guess???
if the endpoints are there, that means that segment with those endpoints is the diameter of the circle, and that also means that the midpoint of that diameter is the center of the circle.
it also means that the distance from the midpoint to either endpoint, is the radius of the circle.
![\bf ~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ (\stackrel{x_1}{2}~,~\stackrel{y_1}{-5})\qquad (\stackrel{x_2}{8}~,~\stackrel{y_2}{-1}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left( \cfrac{8+2}{2}~~,~~\cfrac{-1-5}{2} \right)\implies (5,-3)\impliedby center \\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bmiddle%20point%20of%202%20points%20%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B2%7D~%2C~%5Cstackrel%7By_1%7D%7B-5%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B8%7D~%2C~%5Cstackrel%7By_2%7D%7B-1%7D%29%20%5Cqquad%20%5Cleft%28%5Ccfrac%7B%20x_2%20%2B%20x_1%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20y_2%20%2B%20y_1%7D%7B2%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28%20%5Ccfrac%7B8%2B2%7D%7B2%7D~~%2C~~%5Ccfrac%7B-1-5%7D%7B2%7D%20%5Cright%29%5Cimplies%20%285%2C-3%29%5Cimpliedby%20center%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D)
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ \stackrel{midpoint}{(\stackrel{x_1}{5}~,~\stackrel{y_1}{-3})}\qquad \stackrel{endpoint}{(\stackrel{x_2}{8}~,~\stackrel{y_2}{-1})}\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ \stackrel{radius}{r}=\sqrt{[8-5]^2+[-1-(-3)]^2}\implies r=\sqrt{(8-5)^2+(-1+3)^2} \\\\\\ r=\sqrt{3^2+2^2}\implies r=\sqrt{13} \\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%5Cstackrel%7Bmidpoint%7D%7B%28%5Cstackrel%7Bx_1%7D%7B5%7D~%2C~%5Cstackrel%7By_1%7D%7B-3%7D%29%7D%5Cqquad%20%5Cstackrel%7Bendpoint%7D%7B%28%5Cstackrel%7Bx_2%7D%7B8%7D~%2C~%5Cstackrel%7By_2%7D%7B-1%7D%29%7D%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Bradius%7D%7Br%7D%3D%5Csqrt%7B%5B8-5%5D%5E2%2B%5B-1-%28-3%29%5D%5E2%7D%5Cimplies%20r%3D%5Csqrt%7B%288-5%29%5E2%2B%28-1%2B3%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20r%3D%5Csqrt%7B3%5E2%2B2%5E2%7D%5Cimplies%20r%3D%5Csqrt%7B13%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D)
![\bf \textit{equation of a circle}\\\\ (x- h)^2+(y- k)^2= r^2 \qquad center~~(\stackrel{5}{ h},\stackrel{-3}{ k})\qquad \qquad radius=\stackrel{\sqrt{13}}{ r} \\[2em] [x-5]^2+[y-(-3)]^2=(\sqrt{13})^2\implies \boxed{(x-5)^2+(y+3)^2=13}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bequation%20of%20a%20circle%7D%5C%5C%5C%5C%20%28x-%20h%29%5E2%2B%28y-%20k%29%5E2%3D%20r%5E2%20%5Cqquad%20center~~%28%5Cstackrel%7B5%7D%7B%20h%7D%2C%5Cstackrel%7B-3%7D%7B%20k%7D%29%5Cqquad%20%5Cqquad%20radius%3D%5Cstackrel%7B%5Csqrt%7B13%7D%7D%7B%20r%7D%20%5C%5C%5B2em%5D%20%5Bx-5%5D%5E2%2B%5By-%28-3%29%5D%5E2%3D%28%5Csqrt%7B13%7D%29%5E2%5Cimplies%20%5Cboxed%7B%28x-5%29%5E2%2B%28y%2B3%29%5E2%3D13%7D)
3 5/6 is the correct answer!