Protons and neutrons have similar mass
Electrons are smaller then a proton or a neutron
Answer:
F = 800 [N]
Explanation:
To be able to calculate this problem we must use the principle of momentum before and after the impact of the hammer.
We must summarize that after the impact the hammer does not move, therefore its speed is zero. In this way, we can propose the following equation.
ΣPbefore = ΣPafter

where:
m₁ = mass of the hammer = 0.15 [m/s]
v₁ = velocity of the hammer = 8 [m/s]
F = force [N] (units of Newtons)
t = time = 0.0015 [s]
v₂ = velocity of the hammer after the impact = 0
![(0.15*8)-(F*0.0015) = (0.15*0)\\F*0.0015 = 0.15*8\\F = 1.2/(0.0015)\\F = 800 [N]](https://tex.z-dn.net/?f=%280.15%2A8%29-%28F%2A0.0015%29%20%3D%20%280.15%2A0%29%5C%5CF%2A0.0015%20%3D%200.15%2A8%5C%5CF%20%3D%201.2%2F%280.0015%29%5C%5CF%20%3D%20800%20%5BN%5D)
Note: The force is taken as negative since it is exerted by the nail on the hammer and this force is directed in the opposite direction to the movement of the hammer.
Answer:
f = 1.18 x 10¹¹ Hz
Explanation:
The equation used to find frequency is:
f = c / w
In this form, "f" represents the frequency (Hz), "c" represents the speed of light (3.0 x 10⁸ m/s), and "w" represents the wavelength (m).
Since you have been given the value of the constant (c) and wavelength, you can substitute these values into the equation to find frequency.
f = c / w <---- Formula
f = (3.0 x 10⁸ m/s) / w <---- Plug 3.0 x 10⁸ in "c"
f = (3.0 x 10⁸ m/s) / (2.55 x 10⁻³ m) <---- Plug 2.55 x 10⁻³ in "w"
f = 1.18 x 10¹¹ Hz <---- Divide
Answer:
20 meters per second
Explanation:
If an object accelerates for 2 seconds, and accelerates by 10 meters per second, then that objects speed will be 20 meters per second, assuming hat there are no other factors involved.
The height of the object will be -5.19 cm
A concave mirror's reflecting surface curves inward and away from the light source. Light is reflected inward to a single focus point via concave mirrors. Concave mirrors, in contrast to convex mirrors, produce a variety of images depending on the object's to the mirror.
Given an object 24.0 cm from a concave mirror creates a virtual image at -33.5 cm. if the image is 7.25 cm tall
So let,
v = Image distance from the mirror = -33.5 cm
u = object distance from the mirror (concave) = 24 cm
hi = Image height = 7.25 cm
h = height of the object = ?
Using below formula to find height of the object
-v/u = hi/h
Putting all value in the formula we get
-(-33.5)/(-24) = 7.25/h
h = -5.19 cm
Therefore the height of the object will be -5.19 cm
Learn more about Concave mirror here:
brainly.com/question/3727024
#SPJ10