Answer:
0 J
Explanation:
Since work done W = ∫F.dr and F(x, y, z)= z²i + 4xyj + 5y²k and dr = dxi + dyj + dzk
F.dr = (z²i + 4xyj + 5y²k).(dxi + dyj + dzk) = z²dx + 4xydy + 5y²dz
W = ∫F.dr = ∫z²dx + 4xydy + 5y²dz = z²x + 2xy² + 5y²z
We now evaluate the work done for the different regions
W₁ = work done from (0,0,0) to (1,0,0)
W₁ = {z²x + 2xy² + 5y²z}₀₀₀¹⁰⁰ = 0²(1) + 2(1)(0)² + 5(0)²(0) - [(0)²(0) + 2(0)(0)² + 5(0)²(0)] = 0 - 0 = 0 J
W₂ = work done from (1,0,0) to (1,5,1)
W₂ = {z²x + 2xy² + 5y²z}₁₀₀¹⁵¹ = (1)²(1) + 2(1)(5)² + 5(5)²(1) - [0²(1) + 2(1)(0)² + 5(0)²(0)] = 1 + 50 + 125 - 0 = 176 J
W₃ = work done from (1,5,1) to (0,5,1)
W₃ = {z²x + 2xy² + 5y²z}₁₅₁⁰⁵¹ = 1²(0) + 2(0)(5)² + 5(5)²(1) - [(1)²(1) + 2(1)(5)² + 5(5)²(1)] = 125 - (1 + 50 + 125) = 125 - 176 = -51 J
W₄ = work done from (0,5,1) to (0,0,0)
W₄ = {z²x + 2xy² + 5y²z}₁₅₁⁰⁰⁰ = (0)²(0) + 2(0)(0)² + 5(0)²(0) - [1²(0) + 2(0)(5)² + 5(5)²(1)] = 0 - 125 = -125 J
The total work done W is thus
W = W₁ + W₂ + W₃ + W₄
W = 0 J + 176 J - 51 J - 125 J
W = 176 J - 176 J
W = 0 J
The total work done equals 0 J