Answer:
According to Kepler's 3rd law.
It states that the orbital period, T is related to the distance, r as:
T²
= 4
π²r³
/G M
where G is the universal gravitational constant = 6.673 × 10⁻¹¹ Nm²/kg²
Rearranging for M should give Jupiter's mass.
M =
4
π²r³/GT²
T= 1.77 days × 24 h/day × 60 min/h × 60 s/min = 1.53 × 10⁵ s
r = 4.22x10⁸ m
M = 4π² ((4.22 × 10⁸ m)³/(6.673 × 10⁻¹¹ Nm²/kg² x (1.53 × 10⁵ s)²)
M = 1.90 × 10²⁷kg
The mass of Jupiter is 1.90 × 10²⁷kg.
1.90 × 10²⁷kg
T= 7.16 days × 24 h/day × 60 min/h × 60 s/min = 6.19 × 10⁵s
r = 1.07x10⁹ m
M = 4π² ((1.07 × 10⁹ m)³/(6.673 × 10⁻¹¹ Nm²/kg² x (6.19 × 10⁵ s)²)
M = 1.90 × 10¹⁷kg
The mass of Jupiter is 1.90 × 10¹⁷kg.
THE RESULTS TO PART A and B ARE NOT CONSISTENT. The reason is because of the difference in radius of each satellites from Jupiter. i.e the farther away the moons, the smaller they become in space and the more the number of days to complete an orbit.
Answer:
Inside the strong metal box, there is a microwave generator called a magnetron. When you start cooking, the magnetron takes electricity from the power outlet and converts it into high-powered, 12cm (4.7 inch) radio waves. Thus the microwaves pass their energy onto the molecules in the food, rapidly heating it up.May 3, 2018
If the collision is elastic, there is no loss in kinetic energies, which means that the total energies before and after impact are the same. So no need to worry about final velocities.
Final energy
= initial energy
= (1/2) (7.20*2.00^2+5.75*(-1.30)^2)
=19.26 joules
Answer: the total kinetic energy is 19.3 J. after collision.
Are there answers choice or a picture I can see?
Answer:
Explanation:
work done=force * displacement
=500 N * 40 m
=2000 joule