No. It’s moving at a constant speed (speed is not changing) in a straight line (same direction so velocity is not changing) so it is not accelerating. Acceleration only occurs if there’s a change in speed/velocity.
To solve this problem it is necessary to apply the equations related to the law of Maus.
By the law of Maus we know that

Where,
= Intesity of incident light
I = Intensity of polarized light
With our values we have that
6V/m

Then


Therefore the maximum value of the transmitted E vector is 3V/m
Answer:
Because the force is inversely proportional to the square of the distance
Explanation:
The magnitude of the electrostatic force between two charged particles is given by

where
k is the Coulomb's constant
q1, q2 are the magnitudes of the two charges
d is the distance between the two charges
We observe that the magnitude of the force is inversely proportional to the square of the distance.
Therefore, when the distance changes to

The force will double:

Answer:
To find the diameter of the wire, when the following are given:
Resistivity of the material (Rho), Current flowing in the conductor, I, Potential difference across the conductor ends, V, and length of the wire/conductor, L.
Using the ohm's law,
Resistance R = (rho*L)/A
R = V/I.
Crossectional area of the wire A = π*square of radius
Radius = sqrt(A/π)
Diameter = Radius/2 = [sqrt(A/π)]
Making A the subject of the formular
A = (rho* L* I)V.
From the result of A, Diameter can be determined using
Diameter = [sqrt(A/π)]/2. π is a constant with the value 22/7
Explanation:
Error and uncertainty can be measured varying the value of the parameters used and calculating different values of the diameters. Compare the values using standard deviation