1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Xelga [282]
3 years ago
7

What is the total depreciation (at 10% rate) on a blower purchased 3 years ago for $499?

Mathematics
1 answer:
GrogVix [38]3 years ago
6 0

\bf \qquad \textit{Amount for Exponential Decay} \\\\ A=P(1 - r)^t\qquad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{initial amount}\dotfill &499\\ r=rate\to 10\%\to \frac{10}{100}\dotfill &0.10\\ t=\textit{elapsed time}\dotfill &3\\ \end{cases} \\\\\\ A=499(1-0.10)^3\implies A=499(0.9)^3\implies A=363.771 \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \stackrel{\textit{total depreciation 499 - 363.771}}{135.229}~\hfill

You might be interested in
Tell whether the two rates form a proportion
rusak2 [61]

Answer:

1. Yes

2. Yes

3. Yes

4. No

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Find the missing number so that the equation has no solutions. 5x+1-3x=_x+13
joja [24]

Answer:

You may just add 2 in the spot. Moreover, you get no solution.

Step-by-step explanation:

Hope this helped!

7 0
3 years ago
If 13cos theta -5=0 find sin theta +cos theta / sin theta -cos theta​
Ivahew [28]

Step-by-step explanation:

<h3>Need to FinD :</h3>

  • We have to find the value of (sinθ + cosθ)/(sinθ - cosθ), when 13 cosθ - 5 = 0.

\red{\frak{Given}} \begin{cases} & \sf {13\ cos \theta\ -\ 5\ =\ 0\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \big\lgroup Can\ also\ be\ written\ as \big\rgroup} \\ & \sf {cos \theta\ =\ {\footnotesize{\dfrac{5}{13}}}} \end{cases}

Here, we're asked to find out the value of (sinθ + cosθ)/(sinθ - cosθ), when 13 cosθ - 5 = 0. In order to find the solution we're gonna use trigonometric ratios to find the value of sinθ and cosθ. Let us consider, a right angled triangle, say PQR.

Where,

  • PQ = Opposite side
  • QR = Adjacent side
  • RP = Hypotenuse
  • ∠Q = 90°
  • ∠C = θ

As we know that, 13 cosθ - 5 = 0 which is stated in the question. So, it can also be written as cosθ = 5/13. As per the cosine ratio, we know that,

\rightarrow {\underline{\boxed{\red{\sf{cos \theta\ =\ \dfrac{Adjacent\ side}{Hypotenuse}}}}}}

Since, we know that,

  • cosθ = 5/13
  • QR (Adjacent side) = 5
  • RP (Hypotenuse) = 13

So, we will find the PQ (Opposite side) in order to estimate the value of sinθ. So, by using the Pythagoras Theorem, we will find the PQ.

Therefore,

\red \bigstar {\underline{\underline{\pmb{\sf{According\ to\ Question:-}}}}}

\rule{200}{3}

\sf \dashrightarrow {(PQ)^2\ +\ (QR)^2\ =\ (RP)^2} \\ \\ \\ \sf \dashrightarrow {(PQ)^2\ +\ (5)^2\ =\ (13)^2} \\ \\ \\ \sf \dashrightarrow {(PQ)^2\ +\ 25\ =\ 169} \\ \\ \\ \sf \dashrightarrow {(PQ)^2\ =\ 169\ -\ 25} \\ \\ \\ \sf \dashrightarrow {(PQ)^2\ =\ 144} \\ \\ \\ \sf \dashrightarrow {PQ\ =\ \sqrt{144}} \\ \\ \\ \dashrightarrow {\underbrace{\boxed{\pink{\frak{PQ\ (Opposite\ side)\ =\ 12}}}}_{\sf \blue{\tiny{Required\ value}}}}

∴ Hence, the value of PQ (Opposite side) is 12. Now, in order to determine it's value, we will use the sine ratio.

\rightarrow {\underline{\boxed{\red{\sf{sin \theta\ =\ \dfrac{Opposite\ side}{Hypotenuse}}}}}}

Where,

  • Opposite side = 12
  • Hypotenuse = 13

Therefore,

\sf \rightarrow {sin \theta\ =\ \dfrac{12}{13}}

Now, we have the values of sinθ and cosθ, that are 12/13 and 5/13 respectively. Now, finally we will find out the value of the following.

\rightarrow {\underline{\boxed{\red{\sf{\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}}}}}}

  • By substituting the values, we get,

\rule{200}{3}

\sf \dashrightarrow {\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ {\footnotesize{\dfrac{\Big( \dfrac{12}{13}\ +\ \dfrac{5}{13} \Big)}{\Big( \dfrac{12}{13}\ -\ \dfrac{5}{13} \Big)}}}} \\ \\ \\ \sf \dashrightarrow {\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ {\footnotesize{\dfrac{\dfrac{17}{13}}{\dfrac{7}{13}}}}} \\ \\ \\ \sf \dashrightarrow {\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ \dfrac{17}{13} \times \dfrac{13}{7}} \\ \\ \\ \sf \dashrightarrow {\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ \dfrac{17}{\cancel{13}} \times \dfrac{\cancel{13}}{7}} \\ \\ \\ \dashrightarrow {\underbrace{\boxed{\pink{\frak{\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ \dfrac{17}{7}}}}}_{\sf \blue{\tiny{Required\ value}}}}

∴ Hence, the required answer is 17/7.

6 0
3 years ago
The jar's inner dimensions of the jar are approximately a cylinder with a height of 18
mars1129 [50]

v = \pi \times  {r}^{2}  \times h

v = \pi \times 49 \times 18

v = 2770.88

3 0
3 years ago
Based on the results from part C, which two statements correctly interpret actions the business should take?
icang [17]

Answer:

.

Step-by-step explanation:

7 0
3 years ago
Other questions:
  • 19 over 40 equals ? over 10
    9·1 answer
  • How do I plot y=2x-4
    11·1 answer
  • 50 POINTS!<br><br> What is the value of arcsin(−1/2) in degrees?
    11·2 answers
  • Will mark brainliest if right :)
    7·1 answer
  • Meg bought 20 bags of candy for the party. If 2/5 of the bags are Skittles, how many bags of Skittles does she have?
    15·1 answer
  • Find the length x to the nearest whole number. A right triangle has a vertical leg of length x units, a base leg with a length o
    14·1 answer
  • What is the sign of sum and product
    7·1 answer
  • In a sale the original prices are reduced by 20%.
    10·2 answers
  • Pattern A follows the rule "add 5" and Pattern B follows the rule "subtract 2."
    10·1 answer
  • The area of the cirle is: | I<br> 10 in
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!