After plotting the quadrilateral in a Cartesian plane, you can see that it is not a particular quadrilateral. Hence, you need to divide it into two triangles. Let's take ABC and ADC.
The area of a triangle with vertices known is given by the matrix
M =
Area = 1/2· | det(M) |
= 1/2· | x₁·y₂ - x₂·y₁ + x₂·y₃ - x₃·y₂ + x₃·y₁ - x₁·y₃ |
= 1/2· | x₁·(y₂ - y₃) + x₂·(y₃ - y₁) + x₃·(y₁ - y₂) |
Therefore, the area of ABC will be:
A(ABC) = 1/2· | (-5)·(-5 - (-6)) + (-4)·(-6 - 7) + (-1)·(7 - (-5)) |
= 1/2· | -5·(1) - 4·(-13) - 1·(12) |
= 1/2 | 35 |
= 35/2
Similarly, the area of ADC will be:
A(ABC) = 1/2· | (-5)·(5 - (-6)) + (4)·(-6 - 7) + (-1)·(7 - 5) |
= 1/2· | -5·(11) + 4·(-13) - 1·(2) |
= 1/2 | -109 |
<span> = 109/2</span>
The total area of the quadrilateral will be the sum of the areas of the two triangles:
A(ABCD) = A(ABC) + A(ADC)
= 35/2 + 109/2
= 72
<span> f (x)= 10-x³.
f(2) means the value of the function when x=2.
So, we need to substitute 2 instead of x.
f(2) = 10 - 2³ = 10-8 =2
f(2) = 2
</span>
Answer:
The answer's B.
Step-by-step explanation:
I just took the test.
Quadrilateral EFGH is the only quadrilateral that fits the specifications for a kite. A kite has two pairs of adjacent sides that are congruent and opposite sides that are not congruent.
Answer:
X = 0
Step-by-step explanation: