Y = -3x - 1......so we sub in -3x - 1 in for y in the other equation
2x + 5y = 12
2x + 5(-3x - 1) = 12....now distribute the 5 through the parenthesis
2x - 15x - 5 = 12...add 5 to both sides
2x - 15x = 12 + 5..combine like terms
-13x = 17...divide both sides by -13
x = -17/13
now sub in -17/13 for x in the other equation
y = -3x - 1
y = -3(-17/13) - 1
y = 51/13 - 1
y = 51/13 - 13/13
y = 38/13
so the solution is (-17/13, 38/13)
Answer:
d
Step-by-step explanation:
Answer:
y=t−1+ce
−t
where t=tanx.
Given, cos
2
x
dx
dy
+y=tanx
⇒
dx
dy
+ysec
2
x=tanxsec
2
x ....(1)
Here P=sec
2
x⇒∫PdP=∫sec
2
xdx=tanx
∴I.F.=e
tanx
Multiplying (1) by I.F. we get
e
tanx
dx
dy
+e
tanx
ysec
2
x=e
tanx
tanxsec
2
x
Integrating both sides, we get
ye
tanx
=∫e
tanx
.tanxsec
2
xdx
Put tanx=t⇒sec
2
xdx=dt
∴ye
t
=∫te
t
dt=e
t
(t−1)+c
⇒y=t−1+ce
−t
where t=tanx
Step-by-step explanation:
I guess the answer is 187MB