Answer:
0.2755
Step-by-step explanation:
We intend to make use of the normal approximation to the binomial distribution.
First we'll check to see if that approximation is applicable.
For p=10% and sample size n = 500, we have ...
pn = 0.10(500) = 50
This value is greater than 5, so the approximation is valid.
__
The mean of the distribution we'll use as a model is ...
µ = p·n = 0.10(500)
µ = 50
The standard deviation for our model is ...
σ = √((1-p)µ) = √(0.9·50) = √45
σ ≈ 6.708204
__
A continuity correction can be applied to better approximate the binomial distribution. We want p(t ≤ 9.1%) = p(t ≤ 45.5). For our lookup, we will add 0.5 to this limit, and find p(t ≤ 46).
The attached calculator shows the probability of fewer than 45.5 t's in the sample is about 0.2755.
First distribute the negative over the parentheses:-
= 7s^2 + 3s - 4s^2 + 3s - 1
= 3s^2 +6s - 1
the answer is a B:9
Step-by-step explanation:
THE ANSWERS FOR u question is a B:9
What changes may occur if the given dollar will be rounded off to its nearest value.
<span>There will only be 2 chances, the dollar will become smaller or bigger. Why? </span>
Because in mathematical rules of rounding off numbers:
number below 5 will be round down and 5 and up will be rounded up.
For example:
You have a bill of $6.79 since the number next to the decimal point in the right is 7, it will be rounded up to $7.
<span>But if your bill is $6.25, it will be rounded down to $6.00
</span>
I got this from a different brainy member