The horizontal speed has no effect on the answer.
It doesn't matter whether you flick a marble horizontally from the roof,
fire a high-power rifle horizontally from the roof, drive a school bus straight
off the roof, or drop a bowling ball from the roof with zero horizontal speed.
Their vertical speed is completely determined by gravity, (and it happens to
be the same for all of them).
Handy dandy formula for the distance covered by anything that starts out
with zero speed and accelerates to the end:
Distance = (1/2) (acceleration) x (time)²
If the beginning of the journey is on Earth, then the acceleration is
9.8 m/s² ... the acceleration of gravity on Earth. We'll assume that
the 55-meter rooftop in the question is part of a building on Earth.
55 meters = (1/2) (9.8 m/s²) x (time)²
Divide each side
by 4.9 m/s² : 55 m / 4.9 m/s² = (time)²
(time)² = (55/4.9) sec²
Square-root
each side: time = √(55/4.9 sec²)
= 3.35 sec .
Answer:
Angle θ = 30.82°
Explanation:
From Malus’s law, since the intensity of a wave is proportional to its amplitude squared, the intensity I of the transmitted wave is related to the incident wave by; I = I_o cos²θ
where;
I_o is the intensity of the polarized wave before passing through the filter.
In this question,
I is 0.708 W/m²
While I_o is 0.960 W/m²
Thus, plugging in these values into the equation, we have;
0.708 W/m² = 0.960 W/m² •cos²θ
Thus, cos²θ = 0.708 W/m²/0.960 W/m²
cos²θ = 0.7375
Cos θ = √0.7375
Cos θ = 0.8588
θ = Cos^(-1)0.8588
θ = 30.82°
It is diffraction
Explanation:
The opening is the aperture
If F =m*a
and the question says how much force the s needed to accelerate a 68kg skier to a rate of 1.2ms^-2
Then F = 68*1.2