Answer:
4960 N
Explanation:
First, find the acceleration.
Given:
v₀ = 6.33 m/s
v = 2.38 m/s
Δx = 4.20 m
Find: a
v² = v₀² + 2aΔx
(2.38 m/s)² = (6.33 m/s)² + 2a (4.20 m)
a = -4.10 m/s²
Next, find the force.
F = ma
F = (1210 kg) (-4.10 m/s²)
F = -4960 N
The magnitude of the force is 4960 N.
Answer:
17.6 N
Explanation:
The force exerted by the punter on the football is equal to the rate of change of momentum of the football:

where
is the change in momentum of the football
is the time elapsed
The change in momentum can be written as

where
m = 0.55 kg is the mass of the football
u = 0 is the initial velocity (the ball starts from rest)
v = 8.0 m/s is the final velocity
Combining the two equations and substituting the values, we find the force exerted on the ball:

Answer:
Angular speed = 27.78 rad/s (Approx)
Explanation:
Given:
Diameter = 21.6 cm
Speed = 3 m/s
Find:
Angular speed
Computation:
Radius = 21.6 / 2 = 10.8 cm = 0.108 m
Angular speed = v / r
Angular speed = 3 / 0.108
Angular speed = 27.78 rad/s (Approx)
To represent in order how the animals
Answer:
Each of the joints represents a degree of freedom in the manipulator system and allows translation and rotary motion :) Hope this helps