If the temperature is increased then reaction will shift to the left because heat is absorbed.
<h3>What is equilibrium state?</h3>
Equilibrium of any reaction is that state in which concentration of reactant and concentration of product will be constant.
Given chemical reaction is:
A(g) + 2B(g) ⇄ C(g) + D(g)
From the equilibrium state reaction will move only that side which will contribute to maintain the stable state. In the forward reaction heat is released as mention in the question. So, when the temperature of reaction is increased then it shifts towards the left side by absorbing the heat and maintain the stability.
Hence, option (2) is correct, i.e. It will shift to the left because heat is absorbed.
To know more about equilibrium, visit the below link:
brainly.com/question/14297698
The hydrogen ion concentration [H3O+] in an egg white containing 6.3 × 10-⁷M of [OH-] is 1.5 × 10-⁸M.
<h3>How to calculate [H3O+]?</h3>
The hydrogen ion concentration of a solution can be calculated as follows:
pOH = - log [OH-]
pOH = - log [6.3 × 10-⁷M]
pOH = - [-6.2]
pOH = 6.2
Since pOH + pH = 14
pH = 14 - 6.2
pH = 7.8
pH = - log [H3O+]
7.8 = - log [H3O+]
[H3O+] = 10-⁷:⁸
[H3O+] = 1.5 × 10-⁸M
Therefore, the hydrogen ion concentration [H3O+] in an egg white containing 6.3 × 10-⁷M of [OH-] is 1.5 × 10-⁸M.
Learn more about hydrogen ion concentration at: brainly.com/question/15082545
Answer:
a) The relationship at equivalence is that 1 mole of phosphoric acid will need three moles of sodium hydroxide.
b) 0.0035 mole
c) 0.166 M
Explanation:
Phosphoric acid is tripotic because it has 3 acidic hydrogen atom surrounding it.
The equation of the reaction is expressed as:

1 mole 3 mole
The relationship at equivalence is that 1 mole of phosphoric acid will need three moles of sodium hydroxide.
b) if 10.00 mL of a phosphoric acid solution required the addition of 17.50 mL of a 0.200 M NaOH(aq) to reach the endpoint; Then the molarity of the solution is calculated as follows

10 ml 17.50 ml
(x) M 0.200 M
Molarity = 
= 0.0035 mole
c) What was the molar concentration of phosphoric acid in the original stock solution?
By stoichiometry, converting moles of NaOH to H₃PO₄; we have
= 
= 0.00166 mole of H₃PO₄
Using the molarity equation to determine the molar concentration of phosphoric acid in the original stock solution; we have:
Molar Concentration = 
Molar Concentration = 
Molar Concentration = 0.166 M
∴ the molar concentration of phosphoric acid in the original stock solution = 0.166 M
Answer:
A) At stage 1 it begins to transmit electrons
B) Electron #2 because it jumped from level 1 to level 4
Explanation: