So to get the answer you do 100100100+303030-101010 which = 100302120 x 10 (the amount she/he gets for each subscriber) which is the amount of money Kiersten earned.
Hope this helped
8.57 change. 3.079 - 3.4999. divided by 3.499. multply by 100
Answer:
The time taken for the flare to hit the ground is approximately 10.7 seconds.
Step-by-step explanation:
Given : Suppose a flare is shot from the top of a 120 foot building at a speed of 160 feet per second. The equation
models the h height at t seconds of the flare.
To find : How long will it take for the flare to hit the ground?
Solution :
The equation
models the h height at t seconds of the flare.
The flare to hit the ground when h=0.
Substitute in the equation,

Applying quadratic formula, 
Where, a=-16, b=160 and c=120





Reject the negative value.
Therefore, the time taken for the flare to hit the ground is approximately 10.7 seconds.
Answer:
C. 63.4
Step-by-step explanation:
Answer:
Both the parts of this question require the use of the "Intersecting Secant-Tangent Theorem".
Part A
The definition of the Intersecting Secant-Tangent Theorem is:
"If a tangent segment and a secant segment are drawn to a circle from an exterior point, then the square of the measure of the tangent segment is equal to the product of the measures of the secant segment and its external secant segment."
This, when applied to our case becomes, "The length of the secant RT, times its external segment, ST, equals the square of the tangent segment TU".
Mathematically, it can be written as:
Part B
It is given that RT = 9 in. and ST = 4 in. Thus, it is definitely possible to find the value of the length TU and it can be found using the Intersecting Secant-Tangent Theorem as:
Thus,
Thus the length of TU=6 inches