The perimeter of the polygon to the nearest tenth of a unit
. Option (d) is correct.
Further explanation:
The distance between the two points can be calculated as follows,
![\boxed{{\text{Distance}} = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} }](https://tex.z-dn.net/?f=%5Cboxed%7B%7B%5Ctext%7BDistance%7D%7D%20%3D%20%5Csqrt%20%7B%7B%7B%5Cleft%28%20%7B%7Bx_2%7D%20-%20%7Bx_1%7D%7D%20%5Cright%29%7D%5E2%7D%20%2B%20%7B%7B%5Cleft%28%20%7B%7By_2%7D%20-%20%7By_1%7D%7D%20%5Cright%29%7D%5E2%7D%7D%20%7D)
Given:
The coordinates of the vertices of the polygon are
, and ![\left( { - 1, 3} \right).](https://tex.z-dn.net/?f=%5Cleft%28%20%7B%20-%201%2C%203%7D%20%5Cright%29.)
Explanation:
The coordinates of the vertices of the polygon are
, and ![\left( { - 1, 3} \right).](https://tex.z-dn.net/?f=%5Cleft%28%20%7B%20-%201%2C%203%7D%20%5Cright%29.)
The distance between points
and
can be calculated as follows,
![\begin{aligned}{\text{Distance}} &= \sqrt {{{\left( { - 2 - 2} \right)}^2} + {{\left( {5 - 7} \right)}^2}}\\&= \sqrt {16 + 4}\\&= \sqrt {20}\\&= 4.47\\\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%7B%5Ctext%7BDistance%7D%7D%20%26%3D%20%5Csqrt%20%7B%7B%7B%5Cleft%28%20%7B%20-%202%20-%202%7D%20%5Cright%29%7D%5E2%7D%20%2B%20%7B%7B%5Cleft%28%20%7B5%20-%207%7D%20%5Cright%29%7D%5E2%7D%7D%5C%5C%26%3D%20%5Csqrt%20%7B16%20%2B%204%7D%5C%5C%26%3D%20%5Csqrt%20%7B20%7D%5C%5C%26%3D%204.47%5C%5C%5Cend%7Baligned%7D)
The distance between points
and
can be calculated as follows,
![\begin{aligned}{\text{Distance}}&= \sqrt {{{\left( { - 1 - 2} \right)}^2} + {{\left( {5 - 5} \right)}^2}}\\&= \sqrt {9 + 0}\\&= \sqrt9\\&= 3\\\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%7B%5Ctext%7BDistance%7D%7D%26%3D%20%5Csqrt%20%7B%7B%7B%5Cleft%28%20%7B%20-%201%20-%202%7D%20%5Cright%29%7D%5E2%7D%20%2B%20%7B%7B%5Cleft%28%20%7B5%20-%205%7D%20%5Cright%29%7D%5E2%7D%7D%5C%5C%26%3D%20%5Csqrt%20%7B9%20%2B%200%7D%5C%5C%26%3D%20%5Csqrt9%5C%5C%26%3D%203%5C%5C%5Cend%7Baligned%7D)
The distance between points
, and
can be calculated as follows,
![\begin{aligned}{\text{Distance}} &= \sqrt {{{\left( { - 1 + 1} \right)}^2} + {{\left( {3 - 5} \right)}^2}}\\&= \sqrt {0 + 4}\\&= \sqrt4\\&= 2\\\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%7B%5Ctext%7BDistance%7D%7D%20%26%3D%20%5Csqrt%20%7B%7B%7B%5Cleft%28%20%7B%20-%201%20%2B%201%7D%20%5Cright%29%7D%5E2%7D%20%2B%20%7B%7B%5Cleft%28%20%7B3%20-%205%7D%20%5Cright%29%7D%5E2%7D%7D%5C%5C%26%3D%20%5Csqrt%20%7B0%20%2B%204%7D%5C%5C%26%3D%20%5Csqrt4%5C%5C%26%3D%202%5C%5C%5Cend%7Baligned%7D)
The distance between point
and
can be calculated as follows,
![\begin{aligned}{\text{Distance}} &= \sqrt {{{\left( { - 1 + 2} \right)}^2} + {{\left( {3 - 7} \right)}^2}} \\&= \sqrt {1 + 16} \\&= \sqrt {17} \\&= 4.13\\\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%7B%5Ctext%7BDistance%7D%7D%20%26%3D%20%5Csqrt%20%7B%7B%7B%5Cleft%28%20%7B%20-%201%20%2B%202%7D%20%5Cright%29%7D%5E2%7D%20%2B%20%7B%7B%5Cleft%28%20%7B3%20-%207%7D%20%5Cright%29%7D%5E2%7D%7D%20%5C%5C%26%3D%20%5Csqrt%20%7B1%20%2B%2016%7D%20%5C%5C%26%3D%20%5Csqrt%20%7B17%7D%20%5C%5C%26%3D%204.13%5C%5C%5Cend%7Baligned%7D)
The perimeter of the polygon can be calculated as follows,
![\begin{aligned}{\text{Perimeter}} &= 4.47 + 3 + 2 + 4.13\\&= 13.6\\\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%7B%5Ctext%7BPerimeter%7D%7D%20%26%3D%204.47%20%2B%203%20%2B%202%20%2B%204.13%5C%5C%26%3D%2013.6%5C%5C%5Cend%7Baligned%7D)
Option (a) is not correct.
Option (b) is not correct.
Option (c) is not correct.
The perimeter of the polygon to the nearest tenth of a unit
Option (d) is correct.
Learn more:
- Learn more about inverse of the functionhttps://brainly.com/question/1632445.
- Learn more about equation of circle brainly.com/question/1506955.
- Learn more about range and domain of the function brainly.com/question/3412497
Answer details:
Grade: High School
Subject: Mathematics
Chapter: Coordinate geometry
Keywords: perimeter, shape, perimeter of shape below, Coordinates, vertices, polygon, x-coordinate, y-coordinate, perimeter, circumference, nearest tenth unit, distance formula.