Answer:
look below
Step-by-step explanation:
Here's how to find the GCF of a set of numbers, using prime factorization:
List the prime factors of each number.
Circle every common prime factor — that is, every prime factor that's a factor of every number in the set.
Multiply all the circled numbers. The result is the GCF.
The long a makes the sound ayyyyy like in cake, while the short a makes the sound ahhhhhhh like in apple. You need to switch all of those to the opposite sides :) Hope this helps!
It looks like you're asked to find the value of y(-1) given its implicit derivative,

and with initial condition y(2) = -1.
The differential equation is separable:

Integrate both sides:


Solve for y :



![y = -\dfrac1{\sqrt[3]{3x+C}}](https://tex.z-dn.net/?f=y%20%3D%20-%5Cdfrac1%7B%5Csqrt%5B3%5D%7B3x%2BC%7D%7D)
Use the initial condition to solve for C :
![y(2) = -1 \implies -1 = -\dfrac1{\sqrt[3]{3\times2+C}} \implies C = -5](https://tex.z-dn.net/?f=y%282%29%20%3D%20-1%20%5Cimplies%20-1%20%3D%20-%5Cdfrac1%7B%5Csqrt%5B3%5D%7B3%5Ctimes2%2BC%7D%7D%20%5Cimplies%20C%20%3D%20-5)
Then the particular solution to the differential equation is
![y(x) = -\dfrac1{\sqrt[3]{3x-5}}](https://tex.z-dn.net/?f=y%28x%29%20%3D%20-%5Cdfrac1%7B%5Csqrt%5B3%5D%7B3x-5%7D%7D)
and so
![y(-1) = -\dfrac1{\sqrt[3]{3\times(-1)-5}} = \boxed{\dfrac12}](https://tex.z-dn.net/?f=y%28-1%29%20%3D%20-%5Cdfrac1%7B%5Csqrt%5B3%5D%7B3%5Ctimes%28-1%29-5%7D%7D%20%3D%20%5Cboxed%7B%5Cdfrac12%7D)
Try using photo math. That usually helps
Answer:
Factor, in mathematics, a number or algebraic expression that divides another number or expression evenly—i.e., with no remainder. For example, 3 and 6 are factors of 12 because 12 ÷ 3 = 4 exactly and 12 ÷ 6 = 2 exactly. The other factors of 12 are 1, 2, 4, and 12. A positive integer greater than 1, or an algebraic expression, that has only two factors (i.e., itself and 1) is termed prime; a positive integer or an algebraic expression that has more than two factors is termed composite. The prime factors of a number or an algebraic expression are those factors which are prime. By the fundamental theorem of arithmetic, except for the order in which the prime factors are written, every whole number larger than 1 can be uniquely expressed as the product of its prime factors; for example, 60 can be written as the product 2·2·3·5.