1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vladimir1956 [14]
4 years ago
8

A rectangular storage container with an open top is to have avolume

Mathematics
1 answer:
IRINA_888 [86]4 years ago
5 0

Answer:

Dimensions of the container:

x = 3 m

y = 6 m

h = 1.1 m

C(min) = 270 $

Step-by-step explanation:

Volume of storage container

V = 20 m³

Let  "y" be the length    and  "x" the width   then y = 2*x

V = x*y*h    ⇒  V = 2*x²*h      ⇒   20 = 2*x²+h      ⇒  h  =  10/ x²

Costs:

Total cost = cost of base  ( 5*2*x² )  + cost of side with base x  ( 2*9*x*h) +

cost of side witn base y =2x   (2*9*2x*h)

C(t)  = 10*x²  +  18*x*h  +  36*x*h

C(x)  = 10x²  + 54*x*10/x²      ⇒  C(x)  10*x²   +  540 /x

Taking derivatives on both sides of the equation we get:

C´(x)  =  20*x  -  540/x²

C´(x)  =  0        ⇒  20*x  -  540/x²  =  0   ⇒  2x  - 54/x²   = 0

2x³ - 54  = 0

x³  = 27       x  =  3 m

Then  y  =  2*x    ⇒ y = 2*3   y = 6     and  h  =  10 / x²       h  = 1.1 m

And the minimum cost is

C (min)  =  10*x²  +  540/x     ⇒      C (min)  =  90 + 180

C(min) = 270 $

You might be interested in
Simplify the expression 9m-7m+2m
tatuchka [14]
Simplify step-by-step.

9m−7m+2m

=9m+−7m+2m

Combine Like Terms:

=9m+−7m+2m

=(9m+−7m+2m)

=4m

4 0
3 years ago
Hi, how do we do this question?​
Nutka1998 [239]

Answer:

\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Algebra II</u>

  • Polynomial Long Division

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Integration Constant C
  • Indefinite Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Logarithmic Integration

U-Substitution

Step-by-step explanation:

*Note:

You could use u-solve instead of rewriting the integrand to integrate this integral.

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int {\frac{2x}{3x + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Polynomial Long Division (See Attachment)]:           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\bigg( \frac{2}{3} - \frac{2}{3(3x + 1)} \bigg)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\frac{2}{3}} \, dx - \int {\frac{2}{3(3x + 1)}} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}\int {} \, dx - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx
  4. [1st Integral] Reverse Power Rule:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 3x + 1
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3 \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{3}{3x + 1}} \, dx
  2. [Integral] U-Substitution:                                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{1}{u}} \, du
  3. [Integral] Logarithmic Integration:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|u| + C
  4. Back-Substitute:                                                                                            \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|3x + 1| + C
  5. Factor:                                                                                                           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = -2 \bigg( \frac{1}{9}ln|3x + 1| - \frac{x}{3}  \bigg) + C
  6. Rewrite:                                                                                                         \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
PLEASEEE HELLPP!!!!<br> please don’t answer if you don’t know this is a exam
tensa zangetsu [6.8K]
Answer
C

Explanation
There are no repeating numbers for x
4 0
3 years ago
THERE are 25 students in Ms.Hamptons fifth grade class. THE students want to go on a field trip to a museum. The cost of admissi
Debora [2.8K]
I thin the answer is 625+250=875
So each student have to sell 35 tickets
35x25= 875
So I think the answer is 35
7 0
3 years ago
It costs $3.75 to enter an arcade and $0.50 to play an arcade game. You have $5.75. Write an equation that represents the number
olga nikolaevna [1]
575-375= 200                       200 divided by 50 is 4so he can play 4 games

I hope this helped.:)

7 0
4 years ago
Other questions:
  • The ______________ property of angle congruence states that if angle A is congruent to angle B, then angle B is congruent to Ang
    13·2 answers
  • I need help with this simple question, I am really dumb haha
    6·2 answers
  • Cory needs a new set of four tires for his truck. If the retail price for one tire is $180 at the TIRE BARN and DISCOUNT TIRE, w
    10·1 answer
  • If (x^6)^y = x^3, then y = ___.<br><br> Show your work!
    14·1 answer
  • What are the dimensions of the poster 1 half its current size
    15·1 answer
  • How many terms does the polynomial x^2y^2 have?
    5·2 answers
  • 5 + 8n = 7(-7 + 4n) -6
    13·1 answer
  • IS THIS RIGHT YES OR NO IF NOT HELP PLS AND GET BRAINLIEST
    14·1 answer
  • F(x)=-x^2-10x<br><br> Find f(-5)
    9·1 answer
  • an online music store sells 15 songs for $12. Another online music store sells 10 songs for $9. Which online store has the lower
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!