The ball should put 200 N of force towards the golfer.
Newton's Third Law is every action has an equal and opposite reaction.
It's the ball exerting 200 N of force towards the club as well, but the opposite reaction is that it flies away.
Answer:
the square root of 25 is 5
Explanation:

Answer:
86.4 hrs
Explanation:
The amount of bacteria is initially 1
It doubles every 24 hrs.
After first 24 hrs, the amount = 2
After next 24 hrs = 4
After next 24 hrs = 8
After next 24 hrs = 16
After next 24 hrs = 32
After next 24 hrs = 64
After next 24 hrs = 128
After next 24 hrs = 256
Total time taken to reach 256 = 24 x 8 = 192 hrs
For the bacteria culture on the rocket that travels at a speed of 0.893c relative to the earth, this time is contracted by the relationship
t = t'(1 - ¥^2)^0.5
Where t is the contracted time =?
t' is the time on earth
¥ = v/c
Where v is the speed of the rocket
c is the speed of light
since v = 0.893c
¥ = 0.893
Substituting, we have
t = 192 x (1 - 0.893^2)^0.5
t = 192 x 0.2025^0.5
t = 192 x 0.45 = 86.4 hrs
Answer:
amount of energy = 4730.4 kWh/yr
amount of money = 520.34 per year
payback period = 0.188 year
Explanation:
given data
light fixtures = 6
lamp = 4
power = 60 W
average use = 3 h a day
price of electricity = $0.11/kWh
to find out
the amount of energy and money that will be saved and simple payback period if the purchase price of the sensor is $32 and it takes 1 h to install it at a cost of $66
solution
we find energy saving by difference in time the light were
ΔE = no of fixture × number of lamp × power of each lamp × Δt
ΔE is amount of energy save and Δt is time difference
so
ΔE = 6 × 4 × 365 ( 12 - 9 )
ΔE = 4730.4 kWh/yr
and
money saving find out by energy saving and unit cost that i s
ΔM = ΔE × Munit
ΔM = 4730.4 × 0.11
ΔM = 520.34 per year
and
payback period is calculate as
payback period = 
payback period = 
payback period = 0.188 year
(a) The stone moves by uniform accelerated motion, with constant acceleration

directed downwards, and its initial vertical position at time t=0 is 750 m. So, the vertical position (in meters) at any time t can be written as

(b) The time the stone takes to reach the ground is the time at which the vertical position of the stone becomes zero: y(t)=0. So, we can write

from which we find the time t after which the stone reaches the ground:

(c) The velocity of the stone at time t can be written as

because it is an accelerated motion with initial speed zero. Substituting t=12.37 s, we find the final velocity of the stone:

(d) if the stone has an initial velocity of

, then its law of motion would be

and we can find the time it needs to reach the ground by requiring again y(t)=0:

which has two solutions: one is negative so we neglect it, while the second one is t=11.78 s, so this is the time after which the stone reaches the ground.