<em>friction transforms KE into thermal energy (a)</em>
That's why, if it goes on long enough, the moving object actually gets warm.
The heat (energy) needed to raise the temperature of the water is given by

The wavelength of the radiation of the oven is

, so the energy of a single photon of this radiation is

So, the number of photons required to heat the water is the total energy absorbed by the water divided by the energy of a single photon:

photons
If the box is moving at constant velocity, net force must be zero, so:
F + fr = 0
fr = -F
<u>fr = -40 N</u>
<h2>
Density of the unknown liquid is 771.93 kg/m³</h2>
Explanation:
An empty graduated cylinder weighs 55.26 g
Weight of empty cylinder = 55.26 g = 0.05526 kg
Volume of liquid filled = 48.1 mL = 48.1 x 10⁻⁶ m³
Weight of cylinder plus liquid = 92.39 g = 0.09239 kg
Weight of liquid = 0.09239 - 0.05526
Weight of liquid = 0.03713 kg
We have
Mass = Volume x Density
0.03713 = 48.1 x 10⁻⁶ x Density
Density = 771.93 kg/m³
Density of the unknown liquid is 771.93 kg/m³
Ideal Gas Law PV = nRT
THE GASEOUS STATE
Pressure atm
Volume liters
n moles
R L atm mol^-1 K^-1
Temperature Kelvin
pv = rt
divide both sides by v
pv/v = rt/v
p = rt/v
answer: p = rt/v
Ideal Gas Law: Density
PV = NRT
PV = mass/(mw)RT
mass/V = P (MW)/RT = density
Molar Mass:
Ideal Gas Law PV = NRT
PV = mass/(MW) RT
MW = mass * RT/PV
Measures of Gases:
Daltons Law of Partial Pressures; is the total pressure of a mixture of gases equals the sum of the partial pressures of the individual gases.
Total = P_ A + P_ B
P_ A V = n_ A RT
P_ B V = n_ B R T
Partial Pressures in Gas Mixtures:
P_ total = P_ A + P_ B
P_ A = n_ A RT/V P_ B = n_ B RTV
P_ total = P_ A + P_ B = n_ total RT/V
For Ideal Gasses:
P_ A = n_ A RT/V P_ total = n_ toatal RT/V
P_ A/P_ total = n_ A RTV/n_ total RTV
= n_ A/n_ total = X_ A
Therefore, P_ A = X_ A P_ total.
PV = nRT
P pressure
V volume
n Number of moles
R Gas Constant
T temperture (Kelvin.).
Hope that helps!!!!!! Have a great day : )