Answer:
3,000 meters
Step-by-step explanation:
recall that 1 kilometer = 1,000 meters
hence
3 kilometers = 1,000 meters x 3 = 3,000 meters
The depth of the swimming pool that is filled to the top is; 4 m
<h3>Snell's Law</h3>
I have attached a schematic diagram showing this question.
The correct width of the pool is 4 meters. Thus; w = 4 m
Incident Angle; θ₁ = 20°
A right angle is 90° and so the angle θ₂ is calculated from;
θ₂ = 90° - θ₁
θ₂ = 90° - 20°
θ₂ = 70°
We can use snell's law formula to find θ₃.
Thus;
n₁sinθ₂ = n₂sinθ₃
where;
n₁ is refractive index of air = 1
n₂ is refractive index of water = 1.33
Thus;
1*sin 70 = 1.33*sin θ₃
sin θ₃ = (sin 70)/1.33
Solving this gives;
θ₃ = 44.95°
By usage of trigonometric ratios we can find the depth of the pool using;
w/d = tan θ₃
Thus;
d = w/(tan θ₃)
d = 4/(tan 44.95)
d ≈ 4 m
Read more about Snell's Law at; brainly.com/question/10112549
Solution:
60 x 2/3
60/1 x 2/3
120/3
40
Answer:
40
hope this helps!
Answer:
X=3
X=-9
x=3/4
Step-by-step explanation:
(a) converges; consider the function <em>f(x)</em> = <em>a</em> ˣ, which converges to 0 as <em>x</em> gets large for |<em>a</em> | < 1. Then the limit is 2.
(b) converges; we have
4ⁿ / (1 + 9ⁿ) = (4ⁿ/9ⁿ) / (1/9ⁿ + 9ⁿ/9ⁿ) = (4/9)ⁿ × 1/(1/9ⁿ + 1)
As <em>n</em> gets large, the exponential terms vanish; both (4/9)ⁿ → 0 and 1/9ⁿ → 0, so the limit is 1.
(c) converges; we know ln(<em>n</em> ) → ∞ and arctan(<em>n</em> ) → <em>π</em>/2 as <em>n</em> → ∞. So the limit is <em>π</em>/2.