Answer:
Step-by-step explanation:
Our inequality is |125-u| ≤ 30. Let's separate this into two. Assuming that (125-u) is positive, we have 125-u ≤ 30, and if we assume that it's negative, we'd have -(125-u)≤30, or u-125≤30.
Therefore, we now have two inequalities to solve for:
125-u ≤ 30
u-125≤30
For the first one, we can subtract 125 and add u to both sides, resulting in
0 ≤ u-95, or 95≤u. Therefore, that is our first inequality.
The second one can be figured out by adding 125 to both sides, so u ≤ 155.
Remember that we took these two inequalities from an absolute value -- as a result, they BOTH must be true in order for the original inequality to be true. Therefore,
u ≥ 95
and
u ≤ 155
combine to be
95 ≤ u ≤ 155, or the 4th option
Answer:
a.) dx3x² + 2
Use the properties of integrals
That's
integral 3x² + integral 2
= 3x^2+1/3 + 2x + c
= 3x³/3 + 2x + c
= x³ + 2x + C
where C is the constant of integration
b.) x³ + 2x
Use the properties of integrals
That's
integral x³ + integral 2x
= x^3+1/4 + 2x^1+1/2
= x⁴/4 + 2x²/2 + c
= x⁴/4 + x² + C
c.) dx6x 5 + 5
Use the properties of integrals
That's
integral 6x^5 + integral 5
= 6x^5+1/6 + 5x
= 6x^6/6 + 5x
= x^6 + 5x + C
d.) x^6 + 5x
integral x^6 + integral 5x
= x^6+1/7 + 5x^1+1/2
= x^7/7 + 5/2x² + C
Hope this helps
Answer: First option is correct.
Step-by-step explanation:
Since we have given that

Now, by factorising , we get

Now, we use the formula i.e.

By using this, we get ,

So,

Answer:
In a translation, ALL of the points move the same distance in the same direction. A translation is called a rigid transformation or isometry because the image is the same size and shape as the pre-image.
Step-by-step explanation:
In addition, the corresponding segment sides of the pre-image and image are parallel.
Answer:
0.399
Step-by-step explanation:
3 4
0.057
x 7
_________
0.399