Answer:
V_{average} =
, V_{average} = 2 V
Explanation:
he average or effective voltage of a wave is the value of the wave in a period
V_average = ∫ V dt
in this case the given volage is a square wave that can be described by the function
V (t) = 
to substitute in the equation let us separate the into two pairs
V_average = 
V_average = 
V_{average} = 
we evaluate V₀ = 4 V
V_{average} = 4 / 2)
V_{average} = 2 V
Answer:
BC and DE
Explanation:
In the given figure, the velocity time graph is shown. We know that the area under v-t curve gives the displacement of the particle.
Area under AB, 
Area under BC, 
Area under CD, 
Area under DE, 
Area under EF, 
So, form above calculations it is clear that, during BC and DE undergo equal displacement. Hence, the correct option is (c) "BC and DE = 4 meters".
Answer: The correct answer is "magnetic field".
Explanation:
A magnetic field is produced around the current carrying wire.
If you bring compass needle around the current carrying wire then it shows the deflection which indicates that there is a magnetic field around the current carrying wire.
Magnetic fields are the area around the surrounding of magnet in which magnetic force can be experienced.
Therefore, a magnetic field is produced around a wire when an electrical current is in the wire.
<h2>The option ( c ) is correct</h2>
Explanation:
When we apply the force on any body , the inertia comes into play . It is the tenancy of the the body to oppose the force which tends to change its state .
In first case the train tries to change its state from rest to motion . Thus the inertia of rest opposes this tendency.
In the second case , the train tries to come from motion to the state of rest . Thus again , inertia opposes it .
Therefore inertia is the factor which creates difficulty in both case . Hence option ( c ) is correct