Answer:
the pressure at the bottom is approximately 103264 Pa
Explanation:
From Pascal's law, the pressure at the bottom of the container is the pressure from the atmosphere and the columns of water and olive , therefore
Pressure at the bottom = Pressure at the surface of the liquid ( atmospheric pressure) + pressure of the column of water + pressure of the column of olive oil
since
- Pressure at the surface of the liquid = atmospheric pressure = 101325 Pa
- pressure of the column of water = density of water * gravity * level of water
= 1000 kg/m³ * 9.8 m/s² * 0.12 m = 1176 Pa
- pressure of the column of olive oil= density of olive oil* gravity * level of olive oil = 916 kg/m³ * 9.8 m/s² * 0.085 m = 763 Pa
therefore
Pressure at the bottom = 101325 Pa + 1176 Pa + 763 Pa = 103264 Pa
density of olive oil was taken from internet sources ( we can check that is lower than the one of water, and thus it floats )
Answer:
(a) 1.11sec
(b) 14.37m/s
(c) 31.78m
Explanation:
U = 18m/s, A = 37°, g = 9.8m/s^2
(a) t = UsinA/g = 18sin37°/9.8 = 18×0.6018/9.8 = 1.11sec
(b) Ux = UcosA = 18cos37° = 18×0.7986 = 14.37m/s
(c) R = U^2sin2A/g = 18^2sin2(37°)/9.8 = 324sin74°/9.8 = 324×0.9613/9.8 = 31.78m
The weight of an object is a measure of the force exerted on the object by gravity, or the force needed to support it whereas mass is the amount of matter contained in a body. The SI unit of weight is Newton whereas the SI unit of mass is Kilogram.
No idea about weightless maybe the objects not apparently acted on by gravity.
Answer:
The number of grains of sand on all the beaches on Earth
Explanation:
if we assume grain of sand has an average size , then the number of grains of sand on all the beaches on Earth is roughly
The total number of stars in the observable universe is roughly equivalent to 1 billion trillion. which is roughly equal to the number of grains of sand on all the beaches on Earth.
Answer:
Not quite
Explanation:
The frequency of a wave is inversely proportional to its wavelength. That means that waves with a high frequency have a short wavelength, while waves with a low frequency have a longer wavelength
What determines the strength of a wave?
Wave height is affected by wind speed, wind duration (or how long the wind blows), and fetch, which is the distance over water that the wind blows in a single direction. If wind speed is slow, only small waves result, regardless of wind duration or fetch.
So,
As Wavelength increases, The energy of the wave spreads and it decreases