<span>Velocity, you divide distance/time </span>
Mold
Explanation:
A mold is a cavity that is left behind in the rock after an organism hard part has been dissolved. These are important fossils that useful in relative dating.
- Some hard parts of organism are preserved in form of molds in soft sediments.
- The outline and important details of the hard part is preserved when the mold dissolves away.
- Fossil molds are representative on the internal outline of the hard parts of organisms.
- They are usually recognized as a part of body fossil in a section.
learn more:
Fossils brainly.com/question/7382392
#learnwithBrainly
Answer:
a) 1.20227 seconds
b) 0.98674 m
c) 7.3942875 m/s
Explanation:
t = Time taken
u = Initial velocity = 4.4 m/s
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s²


b) Her highest height above the board is 0.98674 m
Total height she would fall is 0.98674+1.8 = 2.78674 m

a) Her feet are in the air for 0.75375+0.44852 = 1.20227 seconds

c) Her velocity when her feet hit the water is 7.3942875 m/s
Answer:
The kinetic energy K of the moving charge is K = 2kQ²/3d = 2Q²/(4πε)3d = Q²/6πεd
Explanation:
The potential energy due to two charges q₁ and q₂ at a distance d from each other is given by U = kq₁q₂/r.
Now, for the two charges q₁ = q₂ = Q separated by a distance d, the initial potential energy is U₁ = kQ²/d. The initial kinetic energy of the system K₁ = 0 since there is no motion of the charges initially. When the moving charge is at a distance of r = 3d, the potential energy of the system is U₂ = kQ²/3d and the kinetic energy is K₂.
From the law of conservation of energy, U₁ + K₁ = U₂ + K₂
So, kQ²/d + 0 = kQ²/3d + K
K₂ = kQ²/d - kQ²/3d = 2kQ²/3d
So, the kinetic energy K₂ of the moving charge is K₂ = 2kQ²/3d = 2Q²/(4πε)3d = Q²/6πεd