Answer:
The objective function in terms of one number, x is
S(x) = 4x + (12/x)
The values of x and y that minimum the sum are √3 and 4√3 respectively.
Step-by-step explanation:
Two positive numbers, x and y
x × y = 12
xy = 12
S(x,y) = 4x + y
We plan to minimize the sum subject to the constraint (xy = 12)
We can make y the subject of formula in the constraint equation
y = (12/x)
Substituting into the objective function,
S(x,y) = 4x + y
S(x) = 4x + (12/x)
We can then find the minimum.
At minimum point, (dS/dx) = 0 and (d²S/dx²) > 0
(dS/dx) = 4 - (12/x²) = 0
4 - (12/x²) = 0
(12/x²) = 4
4x² = 12
x = √3
y = 12/√3 = 4√3
To just check if this point is truly a minimum
(d²S/dx²) = (24/x³) = (8/√3) > 0 (minimum point)
Answer:
The number u are looking for is 4
Step-by-step explanation:
Let X be the unknown number that we want to find.
So it becomes,
2X = 8
move 2 to the other side, so it becomes a divide
X = 8/2
X = 4
ABCD is a parallelogram Given
AE=CE, BE=DE <span>The diagonals of a parallelogram are bisect each other
</span>∠AEB=∠CED Vertical angles are congruent
ΔABE is congruent to ΔCDE SAS theorem<span>
</span>
300,000 because you have to just multiply 150 by 200
Answer:
Height of the box = 11.5 in
Step-by-step explanation:
Let h be the height of the box.
Assuming the volume of the Box is
.
Given:
Length = Height - 4 = h - 4
Width = 3 in
We need to find the height of the box.
Solution:
We know that the volume of the box.

Substitute all given value in above formula.

Rewrite the equation as:



whole equation divided by 3.

Use quadratic formula with

Put these a, b and c value in above equation.




For positive sign
h = 11.5 in
For negative sign

h = -7.5
We take positive value of h.
Therefore, the height of the box h = 11.5 in