Answer:
139
Step-by-step explanation:
Substitute x for 15.
9(15)+4
Then multiply:
135+4
And then add:
139
(1+x^2)^8
=(1+8x^2+8*7/(1*2)x^4+8*7*6/(1*2*3)x^6+8*7*6*5/(1*2*3*4)x^8+....)
=1+8x^2+28x^4+56x^6+70x^8+....)
For x<1, higher power terms diminish in value, hence we can approximate powers of numbers.
1.01=(1+0.1^2) => x=0.1 in the above expansion
(1.01)^8
=1+8(0.1^2)+28(0.1^4)+56(0.1^6) [ limited to four terms, as requested]
=1+0.08+0.0028+0.000056 (+0.00000070)
=1.082856 (approximately)
M+1.51 is your answer. first you calculate the difference and then you reorder the values.
A:
(f+g)(x)=f(x)+g(x)
(f+g)(x)=4x-5+3x+9
(f+g)(x)=7x+4
B:
(f•g)(x)=f(x)•g(x)
(f•g)(x)=(4x-5)(3x+9)
(f•g)(x)=12x^2-15x+36x-45
(f•g)(x)=12x^2+21x-45
C:
(f○g)(x)=f(g(x))
(f○g)(x)=4(3x+9)-5
(f○g)(x)=12x+36-5
(f○g)(x)=12x+31