ΔG° for the reaction is 5.47kJ mol⁻¹.
The energy that a substance has available for utilization in a chemical reaction or transformation is known as the Gibbs free energy. Things frequently change into other things that have less Gibbs free energy. The Gibbs free energy change indicates whether a chemical reaction will take place spontaneously or not.
By using the formula;
ΔG° = −RTlnKp
Where,
R = 8.3Jk⁻¹mol⁻¹
T = Temperature = 427 + 273 = 700 K
Kp = 8×10⁻⁵(given)
Substituting the value, we get,
ΔG° = −8.3 × 700 × ln(23×10⁻⁵)
ΔG° = −8.3 × 700 × (ln(2³)+ln 10⁻⁵)
= - 8.3 × 700 × (ln(2³)+ln 10⁻⁵)
= − 8.3 × 700 × (2.07−11.5)
=5.47×10⁴Jmol¹
=5.47kJ mol⁻¹
Therefore, ΔG° for the reaction is 5.47kJ mol⁻¹.
Learn more about Gibbs free energy here:
brainly.com/question/13765848
#SPJ4
It would become more frequent....
Answer:
16.7 mL
Explanation:
Convert 250 mL to L.
250 mL = 0.250 L
Calculate the amount of moles of NaOH in 250 mL of 0.300 M NaOH.
0.250 L × 0.300 M = 0.075 mol
Using this amount of moles, you need to find out what volume of 4.50 M will give you that many moles. You can do this by dividing the amount of moles by the molarity.
(0.075 mol)/(4.50 M) = 0.0167 L
Convert from L to mL.
0.0167 L = 16.7 mL
Since the stopper may have contact with the chemical inside the reagent bottle, we should handle it carefully to prevent contamination by contacting it with other checmicals. In addition, we may not want to get pose our health or body at risk by contacting with hazardous checmicals remainings on the stopper.