Answer would be B. CNS the central nervous system
<u>Answer:</u> The final temperature of the mixture is 51.49°C
<u>Explanation:</u>
When two samples of water are mixed, the heat released by the water at high temperature will be equal to the amount of heat absorbed by water at low temperature

The equation used to calculate heat released or absorbed follows:

......(1)
where,
q = heat absorbed or released
= mass of water at high temperature = 140 g (Density of water = 1.00 g/mL)
= mass of water at low temperature = 230 g
= final temperature = ?°C
= initial temperature of water at high temperature = 95.00°C
= initial temperature of water at low temperature = 25.00°C
c = specific heat of water= 4.186 J/g°C
Putting values in equation 1, we get:
![140\times 4.186\times (T_{final}-95)=-[230\times 4.186\times (T_{final}-25)]](https://tex.z-dn.net/?f=140%5Ctimes%204.186%5Ctimes%20%28T_%7Bfinal%7D-95%29%3D-%5B230%5Ctimes%204.186%5Ctimes%20%28T_%7Bfinal%7D-25%29%5D)

Hence, the final temperature of the mixture is 51.49°C
Answer:
The solvent is Nitrogen and the solute is oxygen
Explanation:
Normally the solvent always contains higher amount of substance than the solute in a particular solution
Answer:
Loss of reactants through transfer
Explanation:
Reactants can be lost a little when being transferred by human error
Le Chatelier's Principle says that when something disrupts the equilibrium, the system adjusts to minimize the effect of that disturbance. If 0.1 M HCl solution is added, this dissociates into H+ and Cl- ions, so there will be more Cl- ions in the system. This causes the reaction to go in the reverse direction (equilibrium shifts to the left) to reduce the amount of Cl-.
Since this also consumes Ag+ ions, the concentration of Ag+ (aq) will decrease.
The answer is the second choice.