CO2 ; H20- They are the only ones that, on both sides, combined with another element and bonding of atoms
Molar mass Mg = 24.3 g/mol
1 mole mg ------------ 24.3 g
?? moles mg --------- 4.75 g
4.75 x 1 / 24.3 => 0.195 moles of Mg
hope this helps!
Yes it could, but you'd have to set up the process very carefully.
I see two major challenges right away:
1). Displacement of water would not be a wise method, since rock salt
is soluble (dissolves) in water. So as soon as you start lowering it into
your graduated cylinder full of water, its volume would immediately start
to decrease. If you lowered it slowly enough, you might even measure
a volume close to zero, and when you pulled the string back out of the
water, there might be nothing left on the end of it.
So you would have to choose some other fluid besides water ... one in
which rock salt doesn't dissolve. I don't know right now what that could
be. You'd have to shop around and find one.
2). Whatever fluid you did choose, it would also have to be less dense
than rock salt. If it's more dense, then the rock salt just floats in it, and
never goes all the way under. If that happens, then you have a tough
time measuring the total volume of the lump.
So the displacement method could perhaps be used, in principle, but
it would not be easy.
The answer to this question will be C
Answer:
S/.486 es el valor del anillo
Explanation:
Para hallar el precio del anillo se deben encontrar las moles de oro que contiene este.
Si el anillo es de 90g y solo el 59.1% contiene oro, la cantidad de oro en gramos es:
90g × 59.1% = 53.19g Oro en el anillo
Ahora, para convertir los gramos de oro a moles se debe usar la masa atómica del oro (197g/mol), así:
53.19g × (1mol / 197g) = <em><u>0.27 moles de oro contiene el anillo</u></em>.
Ya que cada mol de oro cuesta S/.1800, 0.27 moles de oro (Y por lo tanto, el anillo) costarán:
0.27mol × (S/.1800 / 1mol oro) =
<h3>S/.486 es el valor del anillo</h3>