Answer:
The final temperature of water is 54.5 °C.
Explanation:
Given data:
Energy transferred = 65 Kj
Mass of water = 450 g
Initial temperature = T1 = 20 °C
Final temperature= T2 = ?
Solution:
First of all we will convert the heat in Kj to joule.
1 Kj = 1000 j
65× 1000 = 65000 j
specific heat of water is 4.186 J /g. °C
Formula:
q = m × c × ΔT
ΔT = T2 - T1
Now we will put the values in Formula.
65000 j = 450 g × 4.186 J /g. °C × (T2 - 20°C )
65000 j = 1883.7 j /°C × (T2 - 20°C )
65000 j/ 1883.7 j /°C = T2 - 20°C
34.51 °C = T2 - 20°C
34.51 °C + 20 °C = T2
T2 = 54.5 °C
It is beacuse the ions in the melted or aqueous ionic compound is mobile and can freely move through the fluid and conduct electricity.
Answer:
9.15×10²³molecules
Explanation:
moles=number of particles/Avogadro's number
1.52=x/6.02×10²³
by cross multiplication;
x=1.52×6.02×10²³
=9.15×10²³
please like and Mark as brainliest
If you are given the number of
moles of sodium bicarbonate, use the balanced chemical equation. The molar mass
of the acetic acid is 60 grams per mole. Using stochiometric balance.
Number of moles of acetic acid =
3 moles NaHCO3 (1 mol CH3COOH/1 mol NaHCO3) = 3 moles of acetic acid
Grams of acetic acid = 3 moles
of CH3COOH (60 g CH3COOH/1 mol CH3COOH) = <span>180 grams of acetic acid</span>
The amino acid chain will be; Lysine-Arginine-Cysteine
Amino acids are the building block of proteins, many amino acid molecules make up polypeptide chains which form proteins. Each amino acid is coded by a specific codon during the process of translation. A codon consists of three nucleotide bases. In this case AAG codes for amino acid Lysine, while AGA codes for Arginine and UGU codes for amino acid Cysteine.