Answer:
c4 is an explosive..
contains RDX, DOS, DOA, and PIB.
Explanation:
The quantity of NaOH required to reach the third equivalence point is 20mL.
Using the titration formula,
CaVa/CbVb = Na/Nb
Where,
Ca = concentration of citric acid (0.200 M)
Cb = concentration of NaOH (0.750 M)
Va = Volume of citric acid (25.0 mL)
Vb = volume of NaOH (x mL)
Na = number of reacting mole of citric acid (3)
Nb = number of reacting mole of NaOH (1)
Therefore Vb ( x mL) =CaVaNb/CbNa
= 0.2× 25×3/0.75 ×1
= 15/0.75
Vb ( x mL) = 20 mL
Learn more here:
brainly.com/question/23631409
For this problem, the solution is exhibiting some colligative properties since the solute in the solution interferes with some of the properties of the solvent. We use equation for the boiling point elevation for this problem. We do as follows:
<span>
ΔT(boiling point) = (Kb)mi
</span>ΔT(boiling point) = (0.512)(1.3/2.0)(2)
ΔT(boiling point) = 0.67 degrees Celsius
<span>
T(boiling point) = 100 + 0.67 = 100.67 degrees Celsius</span>
True, but where is the question?
Answer:
One way to predict the type of bond that forms between two elements is to compare the electronegativities of the elements. In general, large differences in electronegativity result in ionic bonds, while smaller differences result in covalent bonds. the bonding is covalent bcz its between the most electronegative atom nitrogen and carbon .