Answer:
A. Doubles.
Explanation:
In an electromagnetic device such as a generator, when a wire (conductor) moves through the magnetic field between the South and North poles of a magnet, an electromotive force (e.m.f) is usually induced across a wire
The mode of operation of a generator is that a metal core with copper tightly wound to it (conductor coil) rotates rapidly between the two (2) poles of a horseshoe magnet type. Thus when the conductor coil rotates rapidly, it cuts the magnetic field existing between the poles of the horseshoe magnet and then induces the flow of current.
When a high-resistance voltmeter is connected to an electric circuit, a deflection will arise due to the flow of electricity. Moving the magnet towards the coil of wire will cause the needle of the high-resistance voltmeter to move in one direction. Also, as the magnet is moved out from the coil of wire, the needle of the high-resistance voltmeter moves in the opposite direction.
In this scenario, a magnet is moved in and out of a coil of wire connected to a high-resistance voltmeter. If the number of coils doubles, the induced voltage doubles because the number of turns (voltage) in the primary winding is directly proportional to the number of turns (voltage) in the secondary winding.
Answer:
W = - 5.01 10¹⁰ J
Explanation:
Work is defined by the expression
W = ∫ F.dr
Where the blacks indicate vectors, in the case the force is radial and the distance is also radial, whereby the scalar producer is reduced to an ordinary product
W = ∫ F dr
W = G m₁m₂ ∫ 1 /r² dr
W = G m₁ m₂2(-1 / r)
We evaluate between the lower limits r = Re and upper r = ∞
W = G m₁m₂ (-1 / Re + 1 / ∞)
W = - G m₁ m₂ / Re
Let's calculate
W = - 6.67 10⁻¹¹ 800 5.98 10²⁴ / 6.37 10⁶
W = - 5.01 10¹⁰ J
Answer:
E= 55.53 x 10³ V/m
Explanation:
Given that
a= 3.63 cm
Area ,A= a²
distance ,d= 0.473 mm
Stored energy ,U = 8.49 nJ
Value of capacitor given as

By putting the values

C=2.46 x 10⁻¹¹ F

V=Voltage difference


V=26.27 V
V= E d
E=Electric filed
26.27 = E x 0.473 x 10⁻³
E= 55.53 x 10³ V/m
The answer would be 187.95 kg.m/s.
To get the momentum, all you have to do is multiply the mass of the moving object by the velocity.
p = mv
Where:
P = momentum
m = mass
v = velocity
Not the question is asking what is the total momentum of the football player and uniform. So we need to first get the combined mass of the football player and the uniform.
Mass of football player = 85.0 kg
Mass of the uniform = <u> 4.5 kg</u>
TOTAL MASS 89.5 kg
So now we have the mass. So let us get the momentum of the combined masses.
p = mv
= (89.5kg)(2.1m/s)
= 187.95 kg.m/s