The characteristics of standing waves allows to find the result for the speed of the wave is:
- The speed wave is: v = 10 m / s
The wave is a way of transmitting energy without mass displacement, , in the attachment we can see a diagram of the standing wave.
Each cycle corresponds to half a wavelength, they indicate that the frequency is 2.50 Hz and there are three cycles, so the wavelength is:
L =
λ = 2L/n
λ = 2 6 /3
λ = 4 m
Wave speed is related to wavelength and frequency
v = λ f
v = 4 2.5
v = 10 m / s
In conclusion, using the characteristics of standing waves we can find the result for the speed of the wave is:
- The wave speed is: v = 10 m / s
Learn more here: brainly.com/question/12536719
Answer:
kick 1 has travelled 15 + 15 = 30 yards before hitting the ground
so kick 2 travels 25 + 25 = 50 yards before hitting the ground
first kick reached 8 yards and 2nd kick reached 20 yards
Explanation:
1st kick travelled 15 yards to reach maximum height of 8 yards
so, it has travelled 15 + 15 = 30 yards before hitting the ground
2nd kick is given by the equation
y (x) = -0.032x(x - 50)

we know that maximum height occurs is given as


and maximum height is

y = 20
so kick 2 travels 25 + 25 = 50 yards before hitting the ground
first kick reached 8 yards and 2nd kick reached 20 yards
1)Kenetic Energy is defined as energy which a body possesses by virtue of being in motion. 2)KE) is KE = 0.5 x mv2. Here m stands for mass, the measure of how much matter is in an object, and v stands for the velocity of the object, or the rate at which the object changes its position..
And I hope this helped :)
Mass/volume is the formulae