Answer:
The magnetic field in the System is 0.095T
Explanation:
To solve the exercise it is necessary to use the concepts related to Faraday's Law, magnetic flux and ohm's law.
By Faraday's law we know that

Where,
electromotive force
N = Number of loops
B = Magnetic field
A = Area
t= Time
For Ohm's law we now that,
V = IR
Where,
I = Current
R = Resistance
V = Voltage (Same that the electromotive force at this case)
In this system we have that the resistance in series of coil and charge measuring device is given by,

And that the current can be expressed as function of charge and time, then

Equation Faraday's law and Ohm's law we have,



Re-arrange for Magnetic Field B, we have

Our values are given as,





Replacing,


Therefore the magnetic field in the System is 0.095T
Explanation:
It is given that,
Mass of the tackler, m₁ = 120 kg
Velocity of tackler, u₁ = 3 m/s
Mass, m₂ = 91 kg
Velocity, u₂ = -7.5 m/s
We need to find the mutual velocity immediately the collision. It is the case of inelastic collision such that,


v = -1.5 m/s
Hence, their mutual velocity after the collision is 1.5 m/s and it is moving in the same direction as the halfback was moving initially. Hence, this is the required solution.
I have the answer for A. Since there is blockage in the ear canal, some sound waves may not be able to get through or travel as quickly so you would have trouble hearing
Primarily to survey and map the landscape of Mars for future missions. It also takes core samples and searches for water underground. This is important for many reasons, but most obviously for the upcoming missions to mars and the colonies that follow. Hope this helps?
The net force on an object subject to friction is equal to the sum of the applied force and the frictional force.
Mathematically,

Here, m is mass of object and a is its acceleration. We take frictional force negative because it opposes the motion of object.
Given,
,
and 
Substituting these values in above formula, we get
.
Thus, the acceleration of an object is 