Because they behave just like all the electromagnetic waves of the spectrum. Same equations, just shorter wavelengths and more energy.
Hope you get it :)
The time taken to hit the ground is 3.9 s, the range is 18m and the final velocity is 42.82 m/s
<h3>
Motion Under Gravity</h3>
The motion of an object under gravity is the vertical motion of the object under the influence of acceleration due to gravity.
Given that a ball is thrown horizontally from the roof of a building 75 m tall with a speed of 4.6 m/s.
a. how much later does the ball hit the ground?
The time can be calculated by considering the vertical component of the motion with the use of formula below.
h = ut + 1/2gt²
Where
- Initial velocity u = 0 ( vertical velocity )
- Acceleration due to gravity g = 9.8 m/s²
Substitute all the parameters into the formula
75 = 0 + 1/2 × 9.8 × t²
75 = 4.9t²
t² = 75/4.9
t² = 15.30
t = √15.3
t = 3.9 s
b. how far from the building will it land?
The range can be found by using the formula
R = ut
Where u = 4.6 m/s ( horizontal velocity )
R = 4.6 × 3.9
R = 18 m
c. what is the velocity of the ball just before it hits the ground?
The final velocity will be
v = u + gt
v = 4.6 + 9.8 × 3.9
v = 4.6 + 38.22
v = 42.82 m/s
Therefore, the answers are 3.9 s, 18 m and 42.82 m/s
Learn more about Vertical motion here: brainly.com/question/24230984
#SPJ1
Answer:
can you post the full question plz
Explanation:
A Forensic Anthropologist studies skeletal remains and gather information used to determine the individual's age at death, sex and physical condition.
Answer:
B. Axial stress divided by axial strain
Explanation:
Elasticity:
It is the tendency of an object to deform along the axis when an opposing force is applied without facing permanent change in shape.
Plasticity:
When an object crosses the elasticity limit, it enters plasticity where the change due to stress is permanent and the object might even break.
Yield strength:
Yield strength is the point of maximum bearable stress that indicates the limit of elasticity.
Our case:
As the stress applied is less than the yield strength, the rod is still in the elasticity state and its modulus can be calculated.
Modulus of Elasticity = Stress along axis/Ratio of change in length to original length
Axial strain is basically the ratio of change in length to original length.
So, Modulus of Elasticity = Axial Stress/ Axial Strain