Answer:
The ratio of the amount for swordfish to the amount of salmon is 6:4
Step-by-step explanation:
Given as :
The price for 1 pound of swordfish = The price of 1.5 pound of salmon
So, On this relation
The price for ( 1 × 2 ) pound of swordfish = The price of ( 1.5× 2 ) pound of salmon
i.e The price for 2 pound of swordfish = The price of 3 pound of salmon
Now According to question
Mrs. O pay the total money for 2 pounds of swordfish and 3 pound of salmon = $ 39
Let the money she pay for swordfish = 2 sw
And The money she pay for salmon = 3 sa
∵, The total money she pay for both = $ 39
I.e 2 sw + 3 sa = 39
As 2 sw = 3 sa
So, 3 sa + 3 sa = 39
Or, 6 sa = 39
or, sa =
= 
∴ sw =
× 
or, sw = 
Now, the ratio of the amount for swordfish to the amount of salmon = 
I.e The ratio = 
Hence The ratio of the amount for swordfish to the amount of salmon is 6:4
Answer
Answer:
72000 miles.
Step-by-step explanation:
Because we know each tire has been on the car for the same number of miles which means 1 tire can travel :4/5*90000 = 72000 miles.
The <em>quadratic</em> equation 3 · x² + 7 · x - 2 = 0 has a <em>positive</em> discriminant. Thus, the expression has two <em>distinct real</em> roots (<em>real</em> and <em>irrational</em> roots).
<h3>How to determine the characteristics of the roots of a quadratic equation by discriminant</h3>
Herein we have a <em>quadratic</em> equation of the form a · x² + b · x + c = 0, whose discriminant is:
d = b² - 4 · a · c (1)
There are three possibilities:
- d < 0 - <em>conjugated complex</em> roots.
- d = 0 - <em>equal real</em> roots (real and rational root).
- d > 0 - <em>different real</em> roots (real and irrational root).
If we know that a = 3, b = 7 and c = - 2, then the discriminant is:
d = 7² - 4 · (3) · (- 2)
d = 49 + 24
d = 73
The <em>quadratic</em> equation 3 · x² + 7 · x - 2 = 0 has a <em>positive</em> discriminant. Thus, the expression has two <em>distinct real</em> roots (<em>real</em> and <em>irrational</em> roots).
To learn more on quadratic equations: brainly.com/question/2263981
#SPJ1